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ABSTRACT

This thesis introduces the programming language Guarded Horn Clauses which
is abbreviated to GHC. Guarded Horn Clauses was born from the examination
of existing logic programming languages and logic programming in general, with
special attention paid to parallelism.

The main feature of GHC is its extreme simplicity compared with the other
parallel programming languages. GHC is a restriction of a resolution-based theo-
rem prover for Horn-clause sentences. The restriction has two aspects: One is the
restriction on data flow caused by unification, and the other is the introduction of
choice nondeterminism. The former is essential for a general-purpose language and
it also provides GHC with a synchronization primitive. The latter is required by
the intended applications which include a system interacting with the outside world.
What is characteristic with GHC is that all the restrictions have been imposed as
the semantics given to the sole additional syntactic construct, guard.

Although Guarded Horn Clauses can be classified into the family of logic pro-
gramming languages, it has close relationship to other formalisms including dataflow
languages, Communicating Sequential Processes, and functional languages for mul-
tiprocessing. Except for the lack of higher-order facilities, GHC can be viewed as a
generalization of these frameworks. The simplicity and generality of GHC will make
it suitable for a standard not only of parallel logic programming languages but of
parallel programming languages. Moreover, it is simple enough to be regarded as a
computation model as well as a programming language.

Attention has always been paid to the possibility of efficient implementation
during the design stage of GHC. We showed that stream merging and distribution
which are expected to be heavily used can be implemented with the same time-
complexity as the time-complexity of many-to-one communication in procedural
languages. Furthermore, we made available an efficient compiler-based implemen-
tation of a subset of GHC on top of Prolog.

GHC has lost the completeness as a theorem prover deliberately, not as a result
of compromise. Nevertheless, it can be used for efficient implementation of exhaus-
tive solution search for Horn-clause programs. We showed how to automatically
compile a Horn-clause program for exhaustive search into a GHC program.
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Chapter 1
INTRODUCTION

1.1. Motivation

Logic has attracted attention as a programming language since 1970’s. The
first logic programming language Prolog, based on Horn-clause logic, was quite
successful; it is still the most important logic programming language in practice.
The implementation technique of Prolog has been studied very well, and compiler-
based systems have been and are being developed for many computers.

However, although important, Prolog should be considered an approximation
to the ultimate logic programming language; we must continue to search for better
approximations. Actual Prolog systems have a variety of extralogical concepts such
as sequential control, a cut operator, database update and input/output by side
effects, and system predicates sensitive to the current instantiation of a variable.
These extralogical facilities must have been introduced because they were necessary
and/or useful. However, we must examine whether they are truly essential and
whether they can be introduced into the framework of logic programming in a
cleaner way.

Of the above extralogical concepts, the problem of sequential control is closely
related also to the performance of execution. Several researchers made attempts to
design logic programming languages for parallel execution. Of these, Relational
Language and its successor PARLOG by Clark and Gregory [1981][1984a] and
Concurrent Prolog by Shapiro [1983a] contributed very much to the practice of par-
allel logic programming by showing many non-trivial program examples. However,
many of the proposed parallel logic programming languages were developed for the
purpose of alleviating the restriction of sequential control, and did not go so far as
to exclude any inessential sequentiality.

Therefore, it is interesting to know how much concurrency we can exploit con-
ceptually and practically, and to design a language not by extending the semantics
of Prolog which is a special proof procedure suited for sequential execution, but by
restricting more general proof procedures for Horn clauses. The thesis is mainly mo-
tivated by this interest. Since the solution seemed to lie not far from PARLOG and
Concurrent Prolog, we judged that the thorough examination of these languages
should be useful for designing a new language. These languages were defined infor-
mally, so it seemed effective to take an examination method similar to that employed
when a part of the preliminary version of Ada was thoroughly examined by Ueda
[1982].

Another motivation of this research is the desire to promote from practical
aspects parallel logic programming founded by Clark, Gregory, Shapiro and others.
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Not a few people doubted whether languages like Concurrent Prolog and PARLOG
could be used for efficient execution of non-trivial programs, so we must show an
efficient implementation. Not a few people disliked Concurrent Prolog since it
abandoned the facilities to obtain all answer substitutions for a given goal which
they thought a unique and indispensable feature of logic programming. We must
give them a persuasive answer that search problems can be efficiently solved in a
parallel logic programming language without any dedicated feature for exhaustive
search. Research on implementation and applicability of a programming language is
no less important than the design of language features, especially for the prevalence
of the language.

1.2. Objectives

As stated in the previous section, our main objective is to examine the current
practice of logic programming and logic programming languages and to propose a
better alternative to the existing languages. We stick to the framework of resolution-
based theorem proving for a set of Horn clauses, though it may not be the only
framework of logic programming. This framework has been by far the best studied
and put into practice extensively, so a good proposal would have great influence
on the logic programming community. The language we propose is called Guarded
Horn Clauses for its appearance; Guarded Horn Clauses will be abbreviated to GHC
in the sequel.

Special interest and consideration are given to parallelism. In fact, parallelism
is one of the most important design principles of GHC. Employing parallelism as
a principle of language design could be justified by the fact that a formula in the
classical first-order logic expresses no sequentiality.

Another objective is to justify the proposed language GHC from a practical
point of view. It is a crucial matter for a practical language to have an efficient
running implementation. Even sequential implementation should be useful to put
the programming in GHC into practice and to make it widespread. Sequential im-
plementation is more than a prototype, since it can be used to form an interactive
system which communicates with human beings and other peripheral devices, in
which case stream communication of GHC enables much more natural program-
ming than the side-effective I/O of Prolog. Of course, we must not be satisfied
with sequential implementation for a parallel language. Parallel implementation,
however, is one of the main objectives of the Japanese 5G project which began in
1982 and will last 10 years; it is truly a far-reaching goal. Therefore, the best we
can demonstrate now is to show that GHC can be implemented efficiently at least
on a sequential computer, and we will show how we can compile a GHC program
into an efficient Prolog program.

Expressive power of the language is also an important factor for practicality. In
order for the language to be accepted by people in the other communities, we have
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to show how the practices in those communities can be exercised in our framework.
Such important practices will include many-to-one communication and the use of
mutable (rewritable) objects in procedural programming, and exhaustive search in
logic programming; we show how they can be exercised in the GHC framework.

Several remarks will be helpful for clarifying the purpose of this research and
the method taken.

(1) We examine logic programming as a framework for general, practical program-
ming rather than for problem solving. Particularly, we regard fully-controllable
input/output facilities as an essential feature for a general programming lan-
guage.

(2) We regard the basic framework and the primitives of a language as of primary
importance, and user-oriented facilities as secondary. We are interested in what
is the result of computation and what kind of delay is allowed in computation,
rather than what parentheses should be used for grouping entities.

(3) Our approach is not very formal. We know that formality is necessary and
useful for many aspects of programming and programming languages. However,
we know also that informal consideration can be very useful as well.

Items (1) and (2) suggest that our principles for language design are quite
different from that of Nakashima [1983a] when he proposed a language Prolog/KR
as a knowledge representation system. While Nakashima’s interest was in how
the fundamental concepts emerged from artificial intelligence research can be dealt
with in the logic programming framework, our main interest is to extract a minimal
set of concepts which is truly essential for a programming language which allows
parallelism.

1.3. Contributions
The contributions of the research in this thesis are as follows:

(1) We examined existing logic programming languages, and proposed a simple and
general language Guarded Horn Clauses by introducing a notion of dataflow
restriction into the logic programming framework.

(2) We showed that the computational model provided by GHC is uniform and
general enough to express most notions appearing in the existing computational
models.

(3) We provided a starting point of designing more specialized but more efficient
languages for applications in which performance is more important than flexi-
bility.

(4) We showed the viability of GHC as a practical language as well as a conceptual
language by demonstrating that it allows efficient implementation at least on
a sequential computer.



(5) We demonstrated that exhaustive solution search in the usual framework of
logic programming can be done efficiently by using GHC as a base language.
The method proposes a much simpler alternative to the dedicated OR-parallel
machine approach.

Guarded Horn Clauses is going to provide a basis of the Kernel Language
Version 1 (KL1) for multi-SIM (Sequential Inference Machine) and PIM (Parallel
Inference Machine) being developed at Institute for New Generation Computer
Technology (ICOT).

1.4. Structure of the Thesis

This thesis is organized as follows. Chapter 2 reviews logic programming in the
original sense to provide a foundation of the investigation of parallel logic program-
ming in the subsequent chapters. It then reviews the practice of logic programming
which in part deviates from the basic framework. The review includes the ex-
amination of the extralogical features in Prolog some of which will be resolved in
GHC. Chapter 3 introduces parallel logic programming. After giving some motiva-
tions, it discusses parallel execution of logic programs and clarifies the problems in
OR-parallelism and AND-parallelism. Then it surveys previous works on parallel
execution of logic programs and proposals of parallel logic programming languages
for controlled AND-parallelism. Of those proposals, we select Concurrent Prolog
for detailed examination and points out some problems which will be resolved in

GHC.

Chapter 4 introduces Guarded Horn Clauses. It first gives the design principles
of GHC and then describes its syntax and semantics. Several program examples
follow. Then it discusses the primitive operations of GHC. It shows how elegantly
the idea of process interpretation of logic applies to GHC. Finally, it reviews the
design of GHC with justification and mentions possible extensions of the language
and implementation issues. Chapter 5 compares GHC with other languages and
computational models related to parallel and/or logic programming, and clarifies
that GHC gives a uniform and general framework for parallel computation.

Chapter 6 discusses two implementation issues. Firstly, it reinforces the viabil-
ity of GHC as a process description language by showing that the time-complexities
of many-to-one and one-to-many communication and of the operations on mutable
arrays are no worse than those of procedural languages on conventional sequential
computers. Then, it describes an efficient implementation of a subset of GHC and
Concurrent Prolog on top of Prolog. Chapter 7 gives an answer to the applicability
of GHC for search problems. It shows that a vast class of Horn-clause programs for
exhaustive solution search can be compiled into GHC and runs efficiently. Finally,
Chapter 8 summarizes the thesis and gives a prospect for the future.



Chapter 2
LOGIC PROGRAMMING

In this chapter we first review the basic concepts of logic programming in the
original sense, and we clarify the advantages of the framework by comparing it with
the framework of procedural languages. Then we consider the logic programming
framework from the programming language point of view rather than a theorem
prover point of view, which will provide a different view of logic programming. The
purpose of this consideration is to see the viability of logic programming languages
as a general language rather than a special-purpose language.

Next, we examine the current practice of Prolog programming which is different
from the programming in pure Horn-clause logic in many points, and clarify what
extralogical notions are used in it.

As we stated earlier, we restrict our scope of interest to resolution-based theo-
rem provers for a set of Horn clauses throughout the thesis; logic programming in
the other senses is not considered.

2.1. Basic Concepts of Logic Programming

We introduce the basic framework of logic programming founded by Kowalski
[1974], van Emden and Kowalski [1976], Clark [1979], Apt and van Emden [1982]
and others, as well as many preceding works on automated theorem proving. Since
similar introduction can be found in other documents, for example in the book by
Lloyd [1984], we do not pursue generality of the exposition but state only what is
needed to make the thesis self-contained.

Note that this section introduces logic programming as a special and simple case
of theorem proving suitable for a basic framework of a programming language. The
more practical aspects of logic programming will be discussed in detail in Sections
2.2 to 2.4.

2.1.1. Syntax of Logic Programs

We begin by defining syntactic constructs. We use the following classes of
symbols which can vary from program to program:

(1) variables
(2) function symbols
(3) predicate symbols

A predicate symbol is also called a predicate or a relation when its semantics is in
question. In this thesis, we begin variables with capital alphabetical letters, and
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function and predicate symbols with small alphabetical letters. We also use the
letter ‘_’ to denote an anonymous variable. Each occurrence of ‘_’ denotes a variable
distinct from any other variables; that is, two occurrences of ‘_’ denote distinct
variables. Moreover, we use combinations of non-alphabetical and alphabetical
symbols for function and predicate symbols; for example, ‘1’ will be used as function

-

symbols and ‘:=" and ‘$END’ as predicate symbols in this thesis.

Each function or predicate symbol has its arity as a property, which is an integer
value indicating how many arguments follow that symbol. A function symbol with
the arity 0 is called a constant symbol.

Function and predicate symbols may overload, that is, a function symbol and
a predicate symbol may be literally identical and two function or predicate symbols
with different arities may be literally identical. When it is necessary to avoid con-
fusion, we use the notation f/n where f is a function or predicate symbol and n is
its arity.

In addition to the above symbols, we use logical connectives and punctuation
symbols, whose meanings will be explained where they appear.

A term is either
(1) a variable, or

(2) an n-ary function symbol followed by n terms, where the terms, if any (i.e., if
n > 0), are separated by commas and surrounded by parentheses.

When a term T is of the form f(T4,...,T,), f is called the principal function symbol
of T and T;’s are called its arguments. A term which contains no variables is called
a ground term. A term which is not a ground term is called a non-ground term. A
non-ground term is sometimes called an incomplete data structure since it contains
undetermined parts.

An atomic formula, also called an atom, is an n-ary predicate symbol followed
by n terms, where the terms, if any, are separated by commas and surrounded by
parentheses.

An expression is either a term or an atomic formula.

A definite clause, also called a program clause, is of the form
V(HC By A...ANBy), n>0

where H and B;’s are atoms. The symbol V followed by no quantified variable indi-
cates that all the variables appearing free in H and B;’s are universally quantified.
A program clause with n = 0 is called a unit clause, where an empty set of B;’s are
understood as denoting true, a unit of conjunction. H is called a clause head or
simply a head; a set of B;’s are called a clause body or simply a body. Each B; is
called a (body) goal.



A goal clause is of the form
V=(G1 A ... ANGyp), n>0

where GG;’s are atoms. Each G; is called a goal. A goal clause with n = 0 is called
an empty clause which are understood as denoting contradiction.

A Horn clause, also simply called a clause in this thesis, is either a definite
clause or a goal clause. A goal appearing in a Horn clause is said to belong to that
clause.

A logic program, also simply called a program in this thesis, is a conjunction
of definite clauses. A logic program is sometimes called a world or an (internal)
database, according to the intended interpretation. A conjunction of definite clauses
whose heads have the same predicate symbol is called a procedure. Clauses in a
procedure are called sibling clauses.

Our framework is based on first-order predicate logic, but we use only its subset;
the formulae we handle are limited to Horn clauses and their conjunctions. This
subset of first-order logic is called Horn-clause logic. We are interested in this subset
for the following reasons:

(1) A definite clause allows a procedural interpretation which is analogous to pro-
cedures in conventional languages.

(2) For this subset, we have a sound and complete proof procedure with respect
to its declarative semantics (see Section 2.1.4) which is practical and efficient
compared with the sound and complete proof procedures for larger subsets of
first-order logic.

For notational convenience, hereafter we use the following syntactic conven-
tions: A definite clause is written as

H :- By, ..., B,.
and when n = 0, it is abbreviated to

H.

A goal clause is written as
i Gl, ey Gn
and when n = 0, it is also written as O.
The connective ‘:=" reads as “is implied by”, and the connective ‘,” denotes
conjunction. The variables occurring in a clause are understood as universally
quantified.

We prepare special notations for lists: We write the constant ‘nil’ as ‘[]’,
and ‘cons(A,B)’ as ‘[A|IB]’, where A and B are terms. Moreover, we write
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the structure ‘[A| [somethingl]l’ as ‘[A, something]l’, where A is a term and
something is a string of symbols which is balanced with respect to square brackets.

We sometimes use function and predicate symbols as operators. A unary func-
tion/predicate symbol may be used as a prefix or postfix operator, and a binary
function/predicate symbol may be used as an infix operator.

2.1.2. Substitution and Unification

Next, we give a framework for assigning values to the variables in a program.

A substitution is a mapping from a set of variables to a set of terms. Usually
this mapping acts as an identity except for finitely many variables. We write sub-
stitutions as a postfix operator throughout the thesis. A substitution 6 can be
naturally extended to a mapping from a set of expressions to a set of expressions;
T0 is an expression obtained by simultaneously replacing the all the occurrences of
variables in T according to the mapping 6. Here, the expression T0 is called an
instance of T'. A substitution # can be represented by a set of bindings of the form
T/V, where V is a variable and T denotes V6 such that V6§ # V. We say that a
substitution # binds a variable V to a term T if T = V60 # V.

We say that an expression T4 is a variant of an expression 15 if T} is an instance
of T, and T% is an instance of T7. A term p(X,Z) is a variant of p(X,Y), p(Y,X) is
a variant of p(X,Y), but p(X,X) is not a variant of p(X,Y). A new variant U of an
expression 7' is informally defined as a variant of T" such that all the variables in U
are distinct from any variables that have been used in the course of discussion or
computation before U is created.

An expression F is said to be instantiated by a substitution 6 if E6# is not
a variant of . As a special case, a variable V' is said to be instantiated by a
substitution 6 if # binds V' to a non-variable term.

We say that a substitution @ is at least as general as a substitution o if there is
a substitution 7 such that o = 07, that is, if for any expression T', T'o is an instance
of T0. We say that a substitution 6 is as general as a substitution o if 0 is at least
as general o and vice versa, that is, if for any expression T', T'0 is a variant of To.
We say that a substitution 6 is the most general in the set S of substitutions if 0 is
at least as general as any substitutions in S.

Now we can define unification. A substitution 6 is said to unify two expres-
sions T and U, or solve the equation T' = U, if TO and U@ are identical. Such a
substitution is called a unifier of T' and U. A unifier 8 of T and U is called the
most general unifier if 6 is the most general in the set of all unifiers of T"and U. A
unification between T and U is said to bind a variable V' to a term W if their most
general unifier maps V' to W.



2.1.3. Procedural Semantics

The procedural (or operational) semantics of a logic program is identified with
a proof procedure of a goal clause with respect to the program. We use SLD-
resolution (linear resolution with selection function for definite clauses; see Apt and
van Emden [1982]) in the proof procedure described below; this is the only strategy
we consider until we introduce parallelism in Chapter 3.

Given a goal clause “:- G, ..., G, .”, the proof procedure tries to derive from
it an empty clause, which means contradiction, using the clauses in the program.
If this is successful, we say that the original goal clause has been refuted.

To make a refutation, we use SLD-resolution. SLD-resolution is the following
derivation rule for rewriting a goal clause to another:

Let the goal clause to be rewritten be
=Gy, ..., Gy oo, Gy

where G, is the selected atom under the selection rule employed. Then find a new
variant of a program clause

H :- By, ..., B,,. or H.

such that G and H are unifiable with the most general unifier o, and rewrite the
goal clause to

:- Gyo, ..., Gi_10, Byo, ..., Byo, Ggpi0, ..., GLo.

We call the above rewriting a derivation step, a reduction step, or a logical inference.

SLD-resolution is a kind of linear input resolution (Chang and Lee [1973]).
Note that there may be more than one program clause that can be used for each
derivation step. Thus, although the proof procedure is called linear since it always
uses the latest goal clause to make a new one, the behavior of the proof procedure
may not be linear; it involves searching to find a refutation. We can conceive a
possibly infinite search tree called a derivation tree

(1) whose root corresponds to the original goal clause,

(2) whose nodes (except the root) correspond to the goal clauses rewritten by
derivation steps, and

(3) whose arcs correspond to the program clauses used for deriving the goal clauses
corresponding to the son nodes from the goal clauses corresponding to the
parent clauses,

under some selection rule of atoms. In addition to a goal clause, each arc is given
the most general unifier obtained in the derivation step it represents. A path from
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the root ending with an empty clause expresses refutation. For each refutation
path on which substitutions 64, ..., 0, appear in this order, we call the composition
01 ...0x the answer substitution of this refutation. In logic programming, we usually
consider answer substitutions as the result of computation, though this point will
be re-examined in Section 2.3.

We can say that the task of the proof procedure is to find refutation paths in
a derivation tree and to obtain corresponding answer substitutions. Note that not
all the paths in a derivation tree lead to an empty clause; some may be infinite and
others may end with an non-empty clause which allows no further derivation.

There are many search strategies as well as selection rules for atoms a proof
procedure can take to find a refutation. A depth-first proof procedure uses the
strategy that a goal clause derived most recently is always used for deriving a new
goal clause whenever it is possible. A proof procedure is said to be fair if it finds
all refutation paths in a finite time.

We must note that the above formalism of theorem proving gives little consider-
ation to parallel execution like most literature on theorem proving. We will discuss
in Chapter 3 what kind of parallelism we can exploit from the above formalism.

2.1.4. Declarative Semantics

In Section 2.1.3, we gave a proof procedure for logic programs to obtain an-
swer substitutions for a goal clause. We must further make sure how the answer
substitutions are meaningful. As long as the proof procedure cannot be generally
accepted as the basic computational model, we must resort to something considered
more fundamental in order to clarify the meaning of the result of computation. The
most appropriate for such a foundation is first-order logic. We briefly introduce
the results showing that computed answer substitutions are correct in an agreeable
sense. These results are mainly due to Clark [1979].

We denote a logic program by P and a goal clause of the form “:- Gy, ... ,G,,.”"}
by G. An answer substitution 6 is said to be correct if V(G10A...ANG,0) is a logical
consequence of P. A closed formula (i.e., a logical formula without free occurrences
of variables) F' is said to be a logical consequence of another closed formula G if F
is interpreted as true in every model of G. Then, the following properties hold for
the proof procedure described in Section 2.1.3:

(1) (soundness) An answer substitution obtained from the proof procedure is cor-
rect.

(2) (completeness) For any correct answer substitution 6 and under a given selec-
tion rule of atoms, a fair proof procedure computes a substitution o at least as
general as 6.

We can further capture the semantics of a logic program P by means of the
specific model of the program called the minimal Herbrand model Mp. We do
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not go into detail but only note the important properties of the minimal Herbrand
model, which is represented by the set of all elements of the Herbrand base Bp of
P which are interpreted as true in the model.

(1) Mp is a set of all elements of the Herbrand base of P which are logical conse-
quences of P.

(2) Mp is a least fixpoint of the mapping Tp defined as

Tp(I) = {H | there is a ground instance H :- By, ..., B, of
a clause of P such that B; € [ fori=1,...,n},

where a ground instance of a clause is an instance obtained by applying a
substitution mapping all the variables in it to the elements of Bp.

The minimal Herbrand model is important at least in the following three points:

(1) Tt is a general and free model in that it effectively gives no interpretations to
function symbols.

(2) It says just what are the ground logical consequences of P.
(3) We can enumerate its elements.

For some applications, there may be programs that never terminate but are still
useful by being equipped with an appropriate means to observe and/or to control
the result of computation. Clearly we cannot give the semantics in terms of the
‘postmortem’ answer substitutions for such programs. Some people try to capture
the semantics of non-terminating programs by extending Herbrand models to allow
infinite atoms (van Emden and de Lucena [1982], Hagiya [1983], Lloyd [1984]). They
show that the semantics of a non-terminating logic program can be characterized
by the greatest fixpoint of the extended (or complete) Herbrand base.

2.2. Advantages of the Logic Programming Framework

The following can be pointed out as advantages of the logic programming frame-
work over the framework provided by conventional procedural languages:

(1) Non-Strict Data Structures

Since a variable in a logic programming language is ‘monotonic’, we have a
natural notion of the value of some variable being ‘unknown’ or ‘undefined
yet’. By the word ‘monotonic’ we mean that the knowledge about the value of
some variable may increase as computation proceeds but that it never changes.
Such a variable could also be called a single-assignment variable since its top-
level value (i.e., its principal function symbol) can be determined at most once.
Moreover, we can handle a data structure which may contain uninstantiated
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variables in a natural way. Such a data structure is called non-strict or incom-
plete.

By contrast, in many procedural languages the ‘undefined’ state of a variable
is regarded as exceptional rather than one of possible values, despite the fact
that every variable is initially undefined. In order to disallow referring to the
value of an undefined variable, these languages impose awkward language rules
whose violation is not usually detected at compile time or at run time.

The capability to handle incomplete data structures is effectively used in pro-
gramming with difference lists (Clark and Tarnlund [1977]). A difference list
is a pair of some list called head and its sublist called tail. By leaving its tail
undefined, a difference list can be used as a part to construct a longer differ-
ence list or a complete list terminating with ‘nil’. The notion of difference lists
provides us with the freedom of the order in which to determine each portion
of a concrete list structure.

(2) Unification Replaces Assignment, Parameter Passing, and Equality Check

Procedural languages use assignment and a couple of parameter passing mech-
anisms to transfer data. In logic programming languages, these are achieved by
one mechanism, unification. The semantics of assignment is awkward in many
theoretical models, and unification has much cleaner semantics. Moreover, pro-
cedural languages should provide a separate primitive for checking the equality
of two values, while in logic programming unification can be used also for
equality check.

(3) A Program Looks Like a Naive Logical Specification

Any programming language may have its own logic. For example, a procedural
language could be formalized by Hoare logic (Hoare [1969]). However, we
do not call it a logic programming language. So what characterizes a logic
programming language should be that it is based on a naive classical logic
which is originated as a tool for formal treatment of human inference rather
than a logic dedicated for computer languages. Classical logic has been used
as a fundamental tool to describe the specification of procedural programs
(Dijkstra [1975]). Using the same specification, however, we can derive a logic
program more easily, thanks to the smaller semantic gap.

The following are also often claimed as advantages of logic programming.
However, we reserve our judgment and examine these facilities closer in Section
2.3.

(1) Clarity of Semantics

As mentioned in Section 2.1, the semantics of a logic program is characterized
by the least Herbrand model, and SLD-resolution has been proved to be a
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sound and complete proof procedure with respect to the least Herbrand model.
Thus logic programming indeed has a simple and clear model-theoretic and
operational semantics in the framework of theorem proving. However, this
does not necessarily mean that it has a clear semantics when it is amended to
a general-purpose programming language.

(2) Automatic Backtracking and Exhaustive Search

The completeness of the proof procedure, or the capability of obtaining all so-
lutions (answer substitutions) of a given goal is often convenient and sometimes
regarded as a unique feature of logic programming. However, there are also
many situations in which we do not want all the solutions but only one.

(3) Multiple Uses of Predicates

The capability to use a single predicate definition in two or more modes of
information flow is also claimed as a convenient feature. For example, an
‘append’ program can be used for decomposing a list into two sublists and for
checking if some list is a concatenation of two other lists, in addition to the
normal use suggested by the verb ‘append’. In many cases, however, we have
only one intended mode for each predicate we define.

2.3. Closer Look at Logic Programming As a General Programming
Language

This and the next sections examine the characteristics of logic programming in
more detail. Emphasis will be placed on the characteristics of logic programming
as a framework for general programming. Of course, general programming includes
specific areas such as problem solving and knowledge processing which are usually
considered main targets of logic programming and which are really important. The
point is that we examine logic programming from a programming language point of
view rather than from specific application areas. Since Prolog is gaining more and
more application areas and becoming a general-purpose programming language, it
should be meaningful to examine the practice of Prolog programming and clarify
how it is different from logic programming in the pure sense as described in Section
2.1.

This section gives general observations, and Section 2.4 enumerates and exam-
ines the extralogical features of Prolog.

2.3.1. What Is the Virtue of Being Logical?

As we stated in Section 2.2, what characterizes a logic programming language is
that it is based on a naive classical logic originated as a tool for formal treatment of
human inference rather than a logic dedicated for computer languages. Nevertheless,
as we will see later, an actual programming language should be more than a simple
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theorem prover because we have many requirements for an actual programming

language which a simple theorem prover cannot fulfill. Therefore, we must anyway

devise less familiar and more complicated logic to formally describe more aspects of
a programming language. This, however, does not mean that naive classical logic
loses its role in the practice of logic programming: Simple logic is still useful in
programming, in reasoning about programs, and so on.

2.3.2. On Completeness and Multiple Uses of a Predicate

Completeness is highly respected as a desirable property of a proof procedure.

In logic programming or Prolog programming also, we often make use of this prop-
erty. However, we can also observe the following:

(1)

Due to the depth-first search strategy of Prolog implementation, it is far more
difficult to write a Prolog predicate as a fair generator of solutions than to
write a predicate to be used only for checking. We often write a trial-and-
error program for exhaustive search in a trial-and-error manner. Unless it is
necessary, we seldom write programs within the subclass of Horn-clause logic
for which the depth-first proof procedure is complete.

The capability of computing all solutions and the capability of using some
predicate in more than one mode of information flow are independent. In
many cases, each goal appearing in a program has only one intended mode.
For example, the following Prolog program is often used as an example of
naive programs:

sort(X,Y) :- permutation(X,Y), ordered(Y).

However, even the most naive programmer would not use ‘ordered’ as a gen-
erator in the following way,

sort(X,Y) :- ordered(Y), permutation(X,Y).

since this would render the definition of ‘ordered’ much more complicated,
and even if he succeeds in defining it, the whole program would not run as
efficiently. This example shows the importance of the notion of data flow.

We are not always interested in all solutions of a goal. We cannot, however,
express this within the original framework of logic. This is why we often rely
on some control facilities such as a cut operator (see Section 2.4.1).

The original framework of logic programming allows us to ‘search’ all solutions
of a goal exhaustively, but it never means that the obtained solutions can be
‘collected’ together within the framework (see Sections 2.3.3, 2.4 and Chapter
7).
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2.3.3. What Is the Result of Execution of a Logic Program?

It is often claimed (e.g. by Lloyd [1984]) that we are interested in answer
substitutions computed by a proof procedure as well as a success/failure signal
it returns. However, are answer substitutions displayed by the top-level loop of a
Prolog system really a standard way of seeing the result of computation? We believe
they are not. The following analogy will help understand this. The procedural
language counterpart of answer substitutions displayed by the system is the values of
variables displayed by the postmortem dump facilities supported by most operating
systems. However, postmortem dump is never a standard way of seeing the result
of computation in practical programs. Perhaps it is useful only for testing small
pieces of programs and for locating incomprehensible bugs in large programs.

Most non-trivial programs must communicate with its outside world by using
input and output facilities. Therefore, a practical programming language must
provide a capability for full control over input and output. Furthermore, since
the most important medium for human-computer interaction is character strings
(Nakashima, Ueda and Tomura [1983]), a self-contained language must be able
to handle character strings and must be expressive enough to define conversion
procedures between the internal representation of a data structure and its string
representation. Prolog fulfills these requirements, but only in an awkward way.
Input and output are performed by side effects, hence they completely rely on
the specific control structure of Prolog. Side effect is an obstacle to verification,
optimization, and parallel processing.

In general, a program is a transformer of an input data sequence to an out-
put data sequence, and a logic program should express the relation of these two
sequences in its own framework, just as it naturally expresses the relation of two in-
ternal data structure. In fact, this can be exercised if the program is not interactive;
we can read all the input data first, transform them, and then write all the output
data. However, this programming style cannot be used for interactive programs due
to the control strategy of Prolog. This problem is discussed further in Section 3.3.2.

In addition to the input and output facilities, we must examine also the orig-
inal way of seeing answer substitutions in more detail. What we get as an answer
substitution from a proof procedure is a finite set of substitution components. The
finiteness of the answer implies that it tells us which variables have been left unin-
stantiated. The important point is that such information should be considered
a meta-level information, because without any extralogical facilities, a goal in a
program has no means to know whether some variable is instantiated or not.

2.4. Extralogical Features in Prolog

Prolog programming and logic programming are not the same. Prolog has
yielded a number of programming techniques specific to Prolog, most of which are
related to its control structure based on depth-first execution and backtracking.
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These techniques are a kind of tricks in that they should be of little value or even
harmful from the software engineering viewpoint.

Beside the control structure, we often use extralogical facilities especially when
we write a system program. In general, such extralogical features are needed when
we manipulate Prolog programs as data, when we execute programs created as data,
when we want some meta-level information which depends on the progress of the
proof procedure, and so forth.

In this section we survey the extralogical features of Prolog, and clarify how
they are used and why they are extralogical. Surveys on extralogical features in
Prolog have been done also by Démélski and Szeredi [1983] and by Kowalski [1985a),
but of course from the standpoints of their own. Note that we will deal with some
‘logical’ features which may look extralogical as well as truly extralogical ones.

2.4.1. Cut Symbol

A cut symbol or a cut operator is used for controlling the depth-first execution
of a logic program. When the proof procedure encounters a cut operator, it ignores
the sibling clauses of the clause textually containing the cut operator which are not
yet executed. In other words, a cut operator is used for intentionally losing the
completeness of the proof procedure.

One of the most safe uses of cut will be to use it for eliminating alternatives
which would return the same result. An example follows:

abs(X, Y) (- X >= 0, !, Y is X.
abs(X, Y) (- X =<0, !, Y is -X.

We do not care which clause returns the absolute value of 0, and the both clauses
return the same result. Therefore, inserting cut operators avoids unwanted back-
tracking without losing any solutions. Of course, if ‘abs’ were used in the reverse
direction to obtain X, the cut operator would lose possible answers, but it seems
that we do not need to consider such a case.

Another use of cut will be to use it for expressing indifference to the selection
of the result:

0o, ', Y
0o, ', Y

3 *

sign(X, Y)
sign(X, Y)

>= = 247,

pA—

- X
- X

Il
N

The difference from the ‘abs’ example is that we do not care the sign of 0, much
less the clause returning it. In this case, the use of cut seems reasonable since it
prevent the proof procedure from returning two sets of answer substitutions whose
difference is indifferent for us. It could be argued that the above definition is less
safe than the ‘abs’ example, since it fails to answer the question whether —5 and
—0 can have the same sign:
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:- sign(-5, S), sign(-0, S).

However, such a question seems contrary to the intent expressed by the definition
of ‘sign’, because it cares the possible signs of 0.

The above two examples show the use of cut for realizing a kind of input guard
first introduced by Dijkstra [1975] in the form of guarded commands. Although
the use of cut for this purpose may cause a program to deviate somewhat from its
declarative semantics, it should be little problematic as long as the predicate is used
in an intended direction.

Even when we have nothing we do not care, that is, even when clauses are
mutually exclusive, a cut operator is sometimes used for efficiency purposes:

pC(LAIX], ... ) =1,
p(0d, D

The cut operator in the first clause explicitly lets the compiler know the alternative
clause need not be considered. Then the compiler can do tail-recursion optimization
(Warren [1980]) to avoid unnecessary growth of the stack. For the case where the
first argument of the caller of ‘p’ is a non-variable term, tail-recursion optimization
is possible without the cut operator. However, if a programmer does not know
how sophisticated optimization the compiler can do, he or she would do defensive
programming and would provide as much information for optimization as possible.
A compiler of ESP (Chikayama [1984]), a logic programming language augmented
with object-oriented features, even discourages one from writing a clause without
cut by beeping upon encountering such a clause. Wada, Tomura, Nakashima and
Kimura [1982] argue when and how they had to avoid unwanted backtracking.

Other uses of a cut operator include those which make declarative reading of
a program almost meaningless. A typical example is a cut operator for expressing
non-monotonicity, i.e., defaults and exceptions:

can_fly(penguin) :- !, fail.
can_fly(ostrich) :- !, fail.
can_fly(_).

Another example is a cut operator for implementing ‘negation as failure’ (see Section
2.4.6):

\+(P) :- call(P), !, fail.
\+(2).

These clauses allows no declarative readings, but the cut operators together with
the depth-first proof strategy give them important meanings.

It must be noted that some Prolog dialects try to discourage the use of a cut
operator by providing a variety of high-level primitives for backtracking control;
Prolog/KR (Nakashima [1983a]) is the most eager in the elimination of the cut
operator.
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2.4.2. Input and Output

As mentioned in Section 2.3.3, input and output facilities of Prolog are very
awkward. They use side effects and hence completely rely on the specific control
strategy of Prolog. Input and output by side effect are compatible with proce-
dural programming but quite heterogeneous in logic programming. In particular,
the effects of input and output are usually not undone upon backtracking. One
might argue that output is declaratively transparent since adding an output goal
to some clause never changes the declarative reading of the program. However, the
transparency of output means that it is completely extralogical: Logic says nothing
about what output is obtained.

The input and output facilities of Prolog has another point to be considered.
A Prolog system is able to display non-ground terms, in which each occurrence of
a variable is indicated by some character string appropriately given by the system.
However, the conversion of a non-ground term to a character string involves an
extralogical operation to see if each of its subterms is instantiated or not.

2.4.3. Primitives for Modifying Internal Database

Most interpreter-based Prolog systems support primitives (usually called ‘as-
sert’ and ‘retract’) for modifying the internal database in which program clauses
are stored. In other words, the support primitives for modifying the program being
used for execution. These primitives are often used for realizing a large, modifiable
data structure we are familiar with in procedural languages. Although there are a
number of proposals for ‘logical’ array facilities for Prolog (see Eriksson and Rayner
[1984] and Cohen [1984], for example), many Prolog implementations still lack array
and database features which allow efficient access and update within the framework
of logic.

Sometimes the internal database is used also for the purpose for which even
a logical array or database cannot help, that is, to pass information from some
branch of a proof tree to another. Such programs rely on the illogical property of
the database update primitives that their effects are not undone upon backtracking.
Warren [1984] proposed a method of logical database updates in pure Prolog.

The primitive ‘retract’ for deleting a clause is by no means logical since it
causes non-monotonic change of the internal database. On the other hand, the
primitive ‘assert’ for adding a clause can be used in a safer way if we carefully
restrict our use of ‘assert’ to the monotonic change of the database. For example,
one can add a fact which can be inferred from a current program for the purpose of
optimization; this never changes the declarative semantics of the program. Another
example is the addition of new facts in a knowledge acquisition system. In this case,
the internal database must be considered an open world.
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2.4.4. Time-Dependent Operations

A Prolog variable is deemed to have a binary state: Instantiated to a non-
variable term or not. The state of a variable can change at most once during the
execution from uninstantiated to instantiated. The knowledge about the state of
a variable could be called a meta-level knowledge, since it depends on how the
proof is performed and when it is observed. At the ‘object level’ (i.e., the level of
the program being executed), change of the state of a variable never means that
something has changed—what happened is just that something has become known
which was unknown previously. Meta-level knowledge must be clearly distinguished
from the object-level knowledge on the values of instantiated variables.

Nevertheless, we sometimes need to have access to the current state of a
variable, for example when we implement a unification routine with occur check
(Plaisted [1984]) which is not supported by most Prolog implementations. In gen-
eral, we are obliged to use the meta-level knowledge when we write a system pro-
gram in Prolog. The meta-level knowledge exists anyway, whether it is accessible
or not. It can be confined in the implementation of Prolog only if we abandon
writing system programs. Prolog systems usually provide several primitives to ex-
amine the current state of a variable: ‘nonvar(X)’ and ‘var(X)’ to examine if X
is instantiated to a non-variable term or not, ‘X==Y" ‘X \==Y" to examine if X and
Y are literally identical (i.e., unifiable without any substitution) or not, and so on.
Nakashima, Ueda and Tomura [1984] propose higher-level meta-level primitives.

2.4.5. And-Sequentiality and Backtracking As a Control Structure

The fact that the proof procedure of Prolog performs depth-first search can
be utilized for efficiency purposes. Although efficiency is an extralogical matter,
it is independent of the result of computation and no problem arises. However,
Prolog’s specific control strategy is often utilized for guaranteeing the result of
other extralogical operations such as described above.

It is often said that a Prolog program is hard to debug because the behavior
of the program is difficult to understand due to backtracking. This should be
addressed as a problem, since a Prolog programmer must worry to a greater or
lesser degree about control issues for efficiency and/or completeness. In a program
which uses side-effects, backtracking is often used for realizing repetition. The
repetition would start with the goal ‘repeat’ and end with ‘fail’, where ‘repeat’
is defined as follows:

repeat.
repeat :- repeat.

This control structure is entirely meaningless without side effects. This method
is often counted as a programming technique, but it is nothing more than a trick
specific to Prolog programming.
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2.4.6. Call and Negation As Failure

Most Prolog systems provide a system predicate, often named ‘call’, to ‘exe-
cute’ its argument as a goal. We can consider that the predicate ‘call’ interprets
the given term T appropriately and that T is possibly instantiated according to the
interpretation. There should be no harm at all as long as we do not care how the
given term is interpreted.

The idea of ‘negation as failure’ (Clark [1978]) is often used in Prolog. It can
be defined in Prolog as:

\+(P) :- call(P), !, fail.
\+(P).

where the symbol ‘\+’ was used to distinguish it from logical ‘not’, following DEC-
10 Prolog (Bowen, Byrd, Pereira, Pereira and Warren [1983]). Note that we have
used the cut operator and have relied on the specific order of clauses. It is often
pointed out that the above ‘\+’ is different from ‘not’ because if ‘\+’ is a true ‘not’,
the clause

q :- \+(pX))

can be read as
for all X, q if not p(X)

which is equivalent to
q if (for some X, not p(X) ),

while actually it works according to the interpretation
q if not (for some X, p(X) ).

What is worse, a clause containing ‘\+’ sometimes allows no declarative reading in
first-order logic. For example, the extralogical predicate ‘var’ can be defined as
follows (Nakashima [1983b]):

var(X) :- \+(\+(X=1)), \+(\+(X=2)).
This indicates that ‘\+’ itself is extralogical.

However, if the argument of ‘\+’ contains no variables when it is executed,
we can give the declarative semantics to this construct by using Clark’s idea of
completion [1978], and also there is a sound extension of SLD-resolution to handle
a negative atom as a goal. The restriction that a negative atom must be ground can
be weakened; even if it contains variables, there is no problem as long as its proof
does not instantiate them. IC-Prolog (Clark and McCabe [1980]) guarantees the
soundness by reporting an error message when a negated atom can be proved only by
instantiating it. Prolog-II (Colmerauer [1982]) has a system predicate dif (T ,T5)
whose success is postponed until 7} and T, are proved to be ununifiable. Thus ‘dif’
deals with the simplest case of logical negation.
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We may have to point out that the sequentiality among sibling clauses is often
used for implicit negation. For instance, the predicate ‘abs’ in Section 2.4.1 tends
to be defined as follows for the reason of efficiency:

abs(X, X) :- X >= 0, !.
abs(X, Y) :- Y is -X.

2.4.7. Examining and Constructing Non-variable Terms

System programmers often use facilities

(1) for extracting the principal function symbol and the arity of a non-variable
term,

(2) for getting the argument of the specified position of a non-variable term, and

(3) for constructing the most general non-variable term with the specified principal
function symbol.

In DEC-10 Prolog, Items (1) and (3) can be done by the system predicate
‘functor’ and Item (2) by ‘arg’ whose semantics should be clear from the following
example:

:- functor(f(a,b(B),C,C), X, Y). — X =f, Y =4
:— functor(X, g, 3). — X =g(_,_,.)
:- arg(2, f(a,b(B),C,C), X). — X = b(B).

The function symbol ‘f” with four arguments and the symbol ‘£’ with no argument
are different entities which happen to have the same representation. However, we
need not think those primitives as extralogical. The predicate ‘functor’ can be
thought of as relating a non-variable term to some constant; we could write down
the definition of ‘functor’ by giving one clause for each function symbol. We could
also write down the definition of ‘arg’.

2.4.8. Meta-level Nature of the Result of Computation

As we examined in Section 2.3.3, the result of computation shown as possible
sets of answer substitutions contains meta-level information. In front of the termi-
nal, we get from a Prolog system a lot of extralogical information and make a lot
of extralogical decisions, for example to modify the current program. This means
that the task of a man at the terminal cannot easily be ‘automated’ (i.e., replaced
by a program) without introducing meta-level features. We need an appropriate
framework for meta-programming to construct programming systems.

An important application of meta-programming is knowledge assimilation and
belief revision (Kowalski [1985b]) (Miyachi, Kunifuji, Kitakami, Furukawa, Takeuchi
and Yokota [1984]). Meta-level extension of Prolog is discussed in (Bowen and
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Weinberg [1985]) and (Bowen [1985]). Another important application is to collect
all solutions of a given goal as a single data structure. This involves a meta-level
operation because different solutions are originally independent. However, the ca-
pability of Prolog to obtain all solutions is an important advantage, and this advan-
tage would be diminished if we have no means to collect all solutions for the next
processing phase. Most Prolog systems therefore support primitives for collecting
solutions; for example DEC-10 Prolog provides two predicates ‘setof’ and ‘bagof’.

However, when we allow meta-level features, the underlying logic becomes more
complex even if we have one. This means that the formal or mechanical treatment
of programs would become harder. This affects not only programming systems
which would support verification, debugging, and so forth, but also the efficiency of
the programs since the interface between the meta level and the object level may
be hard to optimize. Therefore, the use of meta-level facilities must be limited
to the case where it is really necessary. For example, we show in Chapter 7 that
exhaustive solution search can be done very efficiently for a non-trivial class of
programs without any meta-level features.

2.4.9. Summary

To sum up, too much burden was imposed on Prolog to meet our practical
needs which went far beyond pure Horn-clause logic, and as a result Prolog had a
number of extralogical extensions for which only complex semantics can be given in
the special control strategy of Prolog. We must review our needs and try to find a
way to meet these requirements in a cleaner way.

Of course, it is not impossible to have a formal semantics of the extralogical
features, because sequential Prolog is completely deterministic at meta level, that is,
the proof procedure always takes exactly the same behavior for the same program.
However, the fact that some feature can be defined formally does not necessarily
justify that feature; we can invent a formal definition for anything as long as it is
unambiguously defined informally. The important issue is how lucidly it can be

defined.

The features we have to reconstruct can be divided into two: application-
oriented features and general features. The former include access to meta-level in-
formation, meta-level programming, non-monotonicity, database update, and so on.
Many researchers are searching for cleaner constructs to support them. However,
extension of Horn-clause logic for specific applications is out of the scope of the
thesis, and in this thesis we concentrate ourselves on general features, the most
important of which are input and output.

Very often, input and output are designed only in an ad hoc manner, forming
the dirtiest part of a programming language. However, we could take a completely
different approach: We may adopt as a central issue of language design the clarity of
the semantics of input and output and its uniformity with other language constructs.
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If we succeed in designing a language along this principle, the effect of improvement
can be quite general because every non-trivial program will output something.

In a logic programming language context, an alternative way of input and out-
put was independently proposed in (Nakashima, Ueda and Tomura [1983]) and in
IC-Prolog (Clark and McCabe [1980]). These proposals use a notion of streams to
make input and output declarative. Stream-oriented input and output has one ma-
jor advantage of enhancing modularity, reusability, and modifiability of programs.
If what we see at the terminal is formalized as a stream of characters, it could easily
be directed to the input of another program. If what we input from the terminal is
formalized as a stream of characters, the source of input data can easily be replaced
by the output of another program. This means that a program with stream-oriented
input and output can serve as a module of a larger program without any modifica-
tion. A different way of input was proposed by Sergot [1983], which is called the
‘query-the-user’ facility. The difference from the stream-oriented input is that the
query-the-user facility utilizes monotonic change of internal database as input.
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Chapter 3
PARALLEL LOGIC PROGRAMMING

This chapter introduces parallel logic programming. Parallelism in logic pro-
gramming can be considered at different levels: Implementation, language/pro-
gramming, and application. Of these levels, we take a central interest in the
language/programming level.

In Section 3.1, we present the motivations for considering parallelism in logic
programming. Then we go back to the procedural semantics of logic programs
given in Chapter 2 and discuss in Section 3.2 what kinds of parallelism can be
exploited. The main sources of parallelism are parallel execution of different deriva-
tions and parallelism in a single derivation; they are called OR-parallelism and
AND-parallelism, respectively. In Section 3.3, we survey previous research on par-
allel execution of logic programs. Non-trivial AND-parallelism, or AND-parallelism
involving shared variables, requires some control for practical use, and several pro-
gramming languages and features have been proposed which provides facilities for
controlling AND-parallel execution. Although these features spoil the completeness,
they increase the descriptive power of Horn-clause logic as a programming language
from a practical point of view. Section 3.3 deals with these proposals also, and in
Section 3.4 we scrutinize Shapiro’s Concurrent Prolog which seems to be the most
flexible language of them.

3.1. Parallelism in Logic Programming

Parallelism in logic programming can be considered at various levels: from the
level of application domain to the level of hardware implementation. Each level of
parallelism has its own significance as stated below.

A. Parallelism in the Application Domains

When we simulate, control, or reason about parallel systems or real-time sys-
tems, it is convenient to use a programming language that allows natural and concise
description of parallel systems. Temporal logic is ubiquitously used as a framework
for describing parallel systems, since we are most interested in state transition of a
system along the time axis.

One may wonder why we can and must treat time separately from space once he
learns a little bit of the relativity theory. Nevertheless, special treatment of time can
be meaningful as long as the system is physically small and slow enough. Several
programming languages have been proposed based on various kinds of temporal
or modal logic, which includes Templog (Yonezaki, Atarashi and Hourai [1985]),
Temporal Prolog (Sakuragawa [1985]), Tokio (Aoyagi, Fujita and Moto-oka [1985]),
a language by Aida [1984] and a language by Hagiya [1984b]. However, the moti-
vation of these languages is natural description of time dependency and not all of
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these languages are aimed at the description of parallel systems. Note also that not
all of these language are aimed at parallel execution. (end of A.)

B. Parallelism in Languages and Programming

A logic program is inherently a parallel program in that it expresses no se-
quentiality. Of course, the use of a logic program is directed in the sense that an
answer substitution is generated with respect to a given goal. However, this does
not mean that the computation must proceed sequentially. Prolog introduces se-
quentiality, but it is primarily for compatibility with sequential computers. Prolog
has certainly become expressive by introducing extralogical features (including the
sequential execution itself) which are meaningful only under sequential execution,
but this never justifies sequential execution because these extralogical features must
be reconsidered anyway.

In any programming languages, sequentiality tends to make a program over-
specific. Suppose that two variables X and Y must be initialized to 0 in a Pascal
program. There should be no reason to place one of the assignment statements
in front of the other; a natural description should not impose a specific order.
Inessential sequentiality makes a program and an algorithm less natural and less
general.

In procedural languages, some sequentiality is essential because of the destruc-
tive assignment to variables. However, logic programming is free from destructive
assignments, and therefore the purposes of sequential control are limited to the
following;:

(1) to gain efficiency, and

2) to guarantee the availability of data necessary for executing some system pred-
g Yy Yy g y 1Y
icates such as arithmetics.

Consider a Prolog goal ‘Y is X+1’ which unifies Y with the value of the expres-
sion X+1. It causes an error if X is uninstantiated upon call. However, the above
goal need not cause an error if we can postpone it until X is instantiated. Thus
we can say that the above error condition indicates and results from the discrep-
ancy of data flow and control flow. Control based on data flow should be more
natural than sequentiality. It is worth noting that basically sequential as they are,
Prolog-IT (Colmerauer [1982]) and KLO (Taki, Yokota, Yamamoto, Nakashima and
Mitsuishi [1984]) try to alleviate the inconvenience of sequentiality by their ‘freeze’
and ‘bind_hook’ primitives, respectively. The mechanism of delayed execution is
essential also for realizing inequality of Prolog-II (see Section 2.4.6).

Note that control mechanisms such as delayed execution and coroutines are
conceptually a kind of parallel control, though they are sequential-machine oriented.
Parallelism at the level of languages and programming is independent of parallelism
in implementation, as we will state below. (end of B.)
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C. Parallelism in Implementation

The motivation for parallelism in implementation is quite simple: Faster exe-
cution of programs. Parallelism in implementation is worth exploiting independent
of whether the programs are written in a sequential language or a parallel language.
This can be well understood by seeing that vector processors exploit parallelism in
Fortran programs for numerical computation and performs many mega-FLOPS or
even giga-FLOPS.

Conversely, it is also the case that some program in a parallel language is
the most suitable for sequential implementation. Suppose that a program creates
many processes but just one of them is active at any time. For such a program, a
sequential computer will perform as well as a parallel computer. However, it never
follows that such a program must have been written in a sequential language; it
may really require (pseudo-) parallel control features for concise description, and
an optimizing compiler may generate a good object code for it.

The above discussions illustrate that physical parallelism in implementation
is independent of logical parallelism at the higher levels. The latter parallelism is
often called concurrency to distinguish it from physical parallelism. (end of C.)

In this thesis, we take a central interest in the level of programming and pro-
gramming languages, but our interest will extend also to implementation. Although
we stated that a logic program is inherently a parallel program, the framework of
logic programming as given in Section 2.1 is inadequate for a practical parallel
programming language for the following reasons:

(1) The input and output facilities prerequisite for a practical language is hard to
keep compatible with uncontrolled parallel execution (see Section 3.3.2).

(2) The framework has not been fully considered in terms of parallel execution. We
have not yet clarified what must be considered as primitive operations. Each
derivation step in SLD-resolution is too large for a primitive operation, since
it involves unification and rewriting of a goal clause.

Therefore, it is not at all a trivial task to design a practical parallel programming
language based on Horn-clause logic. In addition, this task is interesting also for
the following viewpoint. Much of the previous research on parallelism were devoted
to enhancing the performance of sequential programs and to enhancing the expres-
sive power of sequential languages. An example of the former is vector processor
implementation of Fortran, which exploits parallelism from sequential programs.
However, a piece of a Fortran program allows vectorization only if it has parallelism
inherently, that is, if the program piece is overspecific. Therefore, it is meaningful
to design a programming language in which parallelism inherent in a problem can
be more naturally expressed.
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Examples of the latter can be seen in most of the practical parallel languages
designed as extension of sequential languages. However, once we have a notation
for synchronizing or ordering two operations, it could replace sequential control in
principle. One of the reasons why those languages retain sequential control will
be for efficiency. However, if a compiler can exploit sequentiality from a parallel
program and generate an efficient code for a sequential computer, we could abolish
sequential control. We propose to shift our default control from sequential to par-
allel, and to consider sequential execution as an optimization to meet the current
computer architecture.

3.2. Parallel Execution of Logic Programs

In this section, we discuss what kinds of parallelism can be exploited from
the procedural semantics of logic programs shown in Section 2.1.3. Conery and
Kibler [1981] and Hogger [1984] also discuss parallel execution of logic programs,
but without reference to the resolution principle; we find the sources of parallelism
in SLD-resolution and argue that parallelism does not lose the soundness and com-
pleteness of SLD-resolution.

3.2.1. OR-parallelism and AND-parallelism

Parallelism in a logic program can be divided into two categories. One is parallel
search for refutations for a given goal clause. As we stated in Section 2.1.3, finding
a refutation of a given goal clause involves searching, since there may be more than
one program clause that can be used for each derivation step. It is a natural idea to
use parallelism in extending a derivation tree in which to find refutation paths. This
parallelism is called OR-parallelism. Note that it is called OR-parallelism though
the program clauses used in each derivation step are in conjunction; this is because
those clauses are used in refutation.

The above-mentioned OR-parallelism includes a couple of special cases. One is
called database parallelism or search parallelism. Database parallelism means that
program clauses usable for some derivation step are searched in parallel. This can
be effective when there are many program clauses (which are usually unit clauses)
potentially usable for the derivation step. Techniques studied as relational database
technology should be applicable in such a case. The other special case is called
pipeline parallelism or backup parallelism. Assume that we have to refute the goal
clause “:- G, G5, ... .” and that we sequentially process all the tasks involved in
solving each G;. Moreover, we assume that we always select the leftmost atom in
each derivation step. Pipeline parallelism means that the process for G; sequentially
generates all the answer substitutions for the subgoal “:- Gy, ..., G;.”, which
are incrementally fed to the process for G;41. In other words, when the process for
Giy1 is extending some path in the derivation tree, the process for G; tries to extend
another path. Note that in pipeline parallelism, two goals in the same derivation
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path are never solved in parallel though goals in different derivation paths can be.
This is why pipeline parallelism is a kind of OR-parallelism.

The other source of parallelism lies in the manner in which each derivation
path is constructed. In Section 2.1.3, we sequentially constructed each path in a
derivation tree. However, it does not matter how refutations are constructed, as long
as those refutations yield correct answer substitutions. Hence it may be possible
to select two or more goals simultaneously for derivation and to exploit parallelism
in unification. This is usually called AND-parallelism because each refutation is
successful when and only when all the parallel tasks involved are successful.

3.2.2. Correctness of Parallel Execution

It is obvious that OR-parallelism does not affect the soundness or the com-
pleteness of the procedural semantics since it only exploits independence of different
derivation paths. On the other hand, AND-parallelism would require justification,
which follows.

Instead of a linear derivation path, we first consider a proof tree defined as
follows:

(1) The root corresponds to the original goal clause.
(2) Each non-root node corresponds to a program clause used for a derivation step.

(3) Each arc corresponds to a body goal of the clause represented by the parent
node.

A proof tree is basically the same as a ‘proof term’ appearing in (Hagiya [1984a]).

In addition to a program clause C', each non-root node is considered as repre-
senting an equation G = H where G is the goal represented by the arc from the
parent node and H is the head of the clause C'. The goal G is called the caller of C',
and G is said to call C'. A proof tree is said to be closed if all the leaf nodes corre-
spond to unit clauses. The answer substitution of a proof tree is the most general
substitution of all the substitutions which simultaneously solve the equations rep-
resented by all non-root nodes. A proof tree may not have an answer substitution.
A proof tree that has an answer substitution is called a non-ordered refutation.

Getting a non-ordered refutation involves two kinds of tasks:
(1) construction of a proof tree and
(2) unification needed to solve equations represented by the non-root nodes.

The AND-parallel proof procedure finds parallelism in these tasks: We may con-
struct a proof tree in parallel, solve equations in parallel, and perform these two
tasks in parallel. This proof method is called parallel input resolution. The primi-
tive operation in the construction of a proof tree is to put a new node under some
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parent node. This corresponds to just providing a body goal with a program clause,
leaving unification of the goal and the clause head as a separate operation. The
primitive operations in solving a set of equations are the primitive operations in
parallel unification. Different models for parallel or nondeterministic unification
are proposed by Martelli and Montanari [1982], Yasuura [1983], Dwork, Kanellakis
and Mitchell [1984], and Ueda [1986]; we do not choose a specific method but only
request that the parallel unification algorithm used in the proof procedure be cor-
rect, that is, it stops and calculates the most general unifier if and only if the original
unification problem has it.

The soundness of parallel input resolution, or the correctness (see Section 2.1.4)
of answer substitutions, can be shown by constructing an SLD-refutation from a
non-ordered refutation obtained by parallel input resolution.

Given a non-ordered refutation, we first give a total order to its non-root nodes,
and hence to the corresponding program clauses and the goals attached to the
incoming arcs of those nodes, by topological sorting. Let the obtained sequences of
program clauses and goals be Cy, ...,C, and Gy, ...,G,. Now we can construct an
SLD-refutation (refutation by SLD-resolution) as follows. Assume we have already
performed (k — 1) derivation steps, obtaining unifiers 6y, ...,0,_; and the kth goal
clause. Then let the selected atom be Gi#,...0,_1 and employ a new variant of
C to derive the (k 4 1)th goal clause. It is obvious

(1) that the kth goal clause contains the goal Gy ...0;_1,

(2) that Gy ...0k_1 is unifiable with the clause head of Cy,

(3) that the (n 4 1)th goal clause is empty, and

(4) that 6y ...6, is equal to the answer substitution of the non-ordered refutation.

Hence, the construction of an SLD-refutation is guaranteed to succeed. Since SLD-
resolution is sound as we seen in Section 2.1.4, we get the soundness of parallel
input resolution.

The completeness of parallel input resolution also can be shown by means of
the completeness of SLD-resolution. We have seen that for any correct answer
substitution # and under a given selection rule of atoms, a fair proof procedure
computes a refutation R with the substitution o at least as general as 6. Therefore, it
suffices to show that a fair proof procedure using parallel input resolution computes
a non-ordered refutation yielding a substitution as general as o.

Given an SLD-refutation R, we can construct a corresponding closed proof tree
T straightforwardly. Firstly, a fair proof procedure can generate any closed proof
tree including T" without failure, since the construction of a proof tree is independent
of unification. Of course it may stop constructing a tree as an optimization when
unification turns out to fail; this, however, does not mean that the construction of a
proof tree has failed. Now it suffices to show that the proof procedure finds that T
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is a non-ordered refutation with the answer substitution as general as . However, a
set of equations in T obviously has the most general unifier o, and we have assumed
that the parallel unification algorithm used in parallel input resolution stops and
calculates the most general unifier if and only if the original unification problem has
it. Therefore, the proof procedure finds that 7T is a non-ordered refutation with an
answer substitution as general as o.

3.2.3. Restricting and Controlling AND-Parallelism

It may be argued that non-ordered resolution is not realistic because of the
large search space. Indeed, the search space includes all proof trees having the
given goal clause as its root. We can reduce the search space by detecting the
failure of unification as early as possible. However, this is often still insufficient.

Consider a unary predicate ‘p’ with a lot of unit clauses. A goal p(X) will
generate many answer substitutions if it is called leaving X uninstantiated. However,
suppose further that there is a goal q(X) in conjunction with p(X), which generates
only a small number of answer substitutions. Then it would be better to introduce
control based on the dataflow concept: The goal p(X) should wait until q(X) finds
an answer substitution for X.

In general, we must impose some restriction on AND-parallelism in order to
minimize computation which does not contribute to final answer substitutions. One
way is to disallow AND-parallel execution of two goals G; and G; which share
variables. If G; and G; do not share variables, all answer substitutions of G; and
G; contribute to the set of answer substitutions of their conjunction. We call this
type of AND-parallelism restricted AND-parallelism after DeGroot [1984].

The other way is to introduce control as illustrated above. We call it controlled
AND-parallelism. The purpose of control is to let each goal wait until it is instan-
tiated enough to avoid fruitless computation. Hence the most straightforward way
of control will be the control based on dataflow, or to put it differently, the control
based on the degree to which each goal is instantiated by the execution of other
goals. This is one of the reasons why we introduce a dataflow concept into a logic
programming language in Chapter 4.

3.3. Previous Works on Parallel Logic Programming

This section surveys the previous works on parallel execution of logic programs
and the proposals of parallel logic programming languages.

3.3.1. OR-Parallelism

Research on OR-parallelism has been done mainly from architectural aspects.
The most important issue characteristic of OR-parallel execution of logic programs
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is the management of multiple environments, i.e., multiple substitutions generated
by different paths of a derivation tree. Other issues include resource management
such as scheduling and spatial allocation of processes, but they seem to be common
to all parallel processing systems.

We will explain in terms of SLD-resolution what is difficult with multiple en-
vironments. Let the goal clause to be rewritten be

= Giy ooy Gry ooy G (3.3.1-1)

where G, is the selected atom. Let the following be new variants of two different
program clauses

Hl’ i Bil: ey Bzml or fIZ (331*2)
Hj i le, ey Bjmj . or Hj. (331*3)

such that H; and H; are unifiable with G, by the most general unifiers o; and o},
respectively. Then, the goal clause is rewritten in two ways:

[ Glai, ey Gk_lai, B“O'Z', ey Bimio-i, Gk—i—lo'i, ey GnO'i. (331*4)

i Glcrj, ey Gk_laj, lecrj, ey Bjij'j, Gk+10j: ey GnO'j. (331*5)

A depth-first sequential proof procedure usually takes advantage of the fact that
(3.3.1-4) and (3.3.1-5) never co-exists in making both derivations. That is, it
records what variables are rewritten by o; when it derives (3.3.1-4). When (3.3.1-4)
turns out to fail and (3.3.1-5) is derived, the proof procedure restores (3.3.1-1) from
(3.3.1-4) by undoing all bindings by o; using the recorded data. These recording
and undoing operations are usually much cheaper than to record (3.3.1-1) itself.

However, this technique cannot be used in OR-parallel execution, since OR-
parallelism means that (3.3.1-4) and (3.3.1-5) may co-exist. One way of having
(3.3.1-4) and (3.3.1-5) simultaneously is to obtain those clauses not by rewriting
(3.3.1-1) but by copying. This method is a kind of shallow binding; it requires
fairly expensive copying operations, but guarantees efficient access to the new goal
clause. Another way is to manage o; and o; together with the common original
clause. This method is a kind of deep binding; creating new goal clauses is cheap,
but access to a new goal clause requires applying a substitution to the ancestor
clause (3.3.1-1) which itself may have to be obtained in the same manner.

Most of the proposals of OR-parallel Prolog machines so far use the copying
scheme. In PIE (Goto, Tanaka and Moto-oka [1984]; Moto-oka, Tanaka, Aida,
Hirata and Maruyama [1984]), the reduction subprocess in an OR-parallel unify
process performs copying; that is, it makes a new goal clause from an old one and a
binding information. In PIM-D (Ito and Masuda [1984]; Tto, Shimizu, Kishi, Kuno
and Rokusawa [1985]), copying is performed by its ‘substitute’ operator. PIM-
R (Onai, Aso, Shimizu, Masuda and Matsumoto [1985]) also adopts the copying
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scheme. On the other hand, K-Prolog (Matsuda, Tamura, Kohata, Kaneda and
Maekawa [1985]) employs the deep binding scheme.

Ciepielewski and Haridi [1983] and Ciepielewski [1984] are well aware of the im-
plementation issue of multiple environments and propose a different scheme. Their
approach could be called demand copying. They use the structure sharing scheme
(Boyer and Moore [1972]), where the environment consists of

(1) contexts which store binding information and

(2) one environment dictionary associated with each node of a derivation tree whose
entries point to context items.

The size of each environment dictionary depends on the level of the node of the
derivation tree with which the dictionary is associated. For each derivation step, a
new environment dictionary is created and context items pointed to by the dictio-
nary of the parent node and containing uninstantiated variables are copied unless
we introduce any optimization. They introduced lazy construction of the dictio-
nary and lazy copying of the context items it points to. Then the initialization of
a new environment becomes cheap as in the deep binding scheme. The first ac-
cess to the value of some variable requires looking up the current and the parent
environment dictionaries and possibly updating the dictionaries and the contexts,
which can be as expensive as the deep binding scheme. However, the subsequent
accesses to the same variable can be done in a constant time like the shallow binding
scheme. Avoiding eager copying will be effective if only a small portions of copies
are referenced.

The author (Ueda [1985c]) proposes a quite different approach to the OR-
parallel execution of logic programs. He proposes to compile OR-parallelism into
(controlled) AND-parallelism. By using mode analysis, his method ‘compiles away’
difficulties in the management of multiple environments with uninstantiated vari-
ables. Detailed description of the method can be found in Chapter 7.

Warren [1984] proposes a memory management scheme for non-depth-first but
sequential execution of logic programs. His method also mixes deep binding and
shallow binding: A tree of activation records serves as association lists and a binding
array holds bindings corresponding to the current node in a derivation tree. Entries
of the binding array are filled ‘on demand’ from the data of the activation records.
When this method is applied to a multiprocessor environment, a binding array need
not be prepared for each process executing some path of a derivation tree but for
each processor which executes a number of processes by repeated context switching.

Architectures for database parallelism have been studied in (Nakagawa [1984)),
(Warren, Ahamad, Debray and Kalé [1984]) and (Taylor, Lowry, Maguire and Stolfo
[1984]). Pipeline parallelism has been studied in (Nitta, Matsumoto and Furukawa
[1983]), (Kanada [1985]) and (Matsuda, Tamura, Kohata, Kaneda and Maekawa
[1985]). Kanada showed how to realize OR-parallelism on a supercomputer with
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pipeline processing capabilities. We must note also that Tick and Warren [1984]
study pipelining at the very low level; they propose a processor which efficiently
executes a sequence of compiled codes by internal pipelining. It will be meaningless
to classify such low-level parallelism into AND-parallelism or OR-parallelism.

3.3.2. AND-Parallelism

As we have seen in Section 3.2.3, AND-parallelism requires restriction and/or
control for practical use. Therefore, research on AND-parallelism has been done
mainly on the mechanisms for the restriction and control.

First, we briefly review restricted AND-parallelism. Conery and Kibler [1985]
and Conery [1983] propose a method for serializing any two goals with shared vari-
ables. Serialization is realized by computing the partial order among the set of
current goals; two goals can be executed in parallel only if there is no ordering be-
tween them. The problem is that the partial order must be computed many times
at runtime. DeGroot [1984] proposes a coarser but more efficient algorithm which
checks absence of shared variables between two goals. PIM-D executes two goals in
parallel only when it is told to do so.

The rest of this section deals with controlled AND-parallelism. Research on
controlled AND-parallelism goes back to the research on coroutining. Although it
may look a little bit complex, coroutining is a natural control scheme which enables
scheduling based on the availability of data. Coroutining makes naive generate-and-
test programs practical to some extent by the early detection of failure.

Two methods for coroutining have been proposed: One is coroutining based on
the number of reduction steps, and the other is dataflow coroutining. The former
is used in Epilog (Porto [1982]) and appears also in (Pereira [1982]). They achieve
coroutining by means of the delay primitive which causes one-cycle delay to the
reduction of the specified goal. The problem of this method is that the primitive is
rather machine-oriented: The amount of delay must be correctly specified according
to the given coroutining interpreter, and the semantics of the primitive can be
understood only in terms of that interpreter. In addition, this method is not easily
amendable to parallel evaluation because the semantics is defined in terms of the
centralized interpreter.

Dataflow coroutining is a more user-oriented way of specifying coroutining.
IC-Prolog (Clark and McCabe [1980]), among a variety of its features, allows a pro-
grammer to specify what occurrence of a shared variable should act as a generator,
and it schedules goals based on this information. The specification of the generator
(or the consumers) is done by annotations on variables. This scheme is appropriate
also for (pseudo-)parallel processing, and IC-Prolog actually allows both parallelism
and coroutining. Here, parallelism means that the generation of bindings by the
producer goal can go ahead of the consumption of them, while coroutining means
that the producer cannot generate a new binding until the consumer processes the
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previous one. However, the control primitives are only very informally described,
and so the semantics of the language is not so simple and clear as its successors
such as the Relational Language described below.

Coroutining and parallelism controlled by annotations provide an ideal frame-
work for programming with input and output (Nakashima, Ueda and Tomura
[1983]). As we stated in Section 2.3.3, a program with input and output should
keep the relational programming style, that is, it should be written as the relation
of a sequence of input data and a sequence of output data:

:— in(In), transform(In, Out), out(Out).

While the above goals could be processed sequentially, parallelism or coroutining
produces the following advantages. Firstly, it realizes pipelined processing of the
input sequence In and enables incremental generation of the output data Out.
Secondly, it saves memory space because the part of the input and output se-
quences already processed can be discarded as garbage. Moreover, the relational
style is advantageous in modularity and reusability of programs, and it encourages
differential programming. The output of a program can easily be fed as the input
of another program if we handle input and output data as sequences.

Sequences of input/output data, which are usually implemented as linear lists,
are often called streams. More generally, a sequence of data transferred from one
goal to another by means of a shared variable is called a stream. Controlled AND-
parallelism is often called stream AND-parallelism, since a stream is an important
pragmatic concept in controlled AND-parallelism and large-grain parallelism can
be exploited by parallel execution of goals communicating by streams. Goals which
consume and generate streams are often called processes.

Van Emden and de Lucena [1982] presented a process interpretation of logic
programs (see Section 4.8) by using simple examples. They showed a network of
parallel processes can be described in logic programming. However, although their
exposition well describes the basic idea, it does not deal with many subtle points
in the semantics of parallel execution. Like other early proposals of stream AND-
parallelism, parallelism was introduced as an additional construct to the sequential
framework, and each process is regarded as a stack of computation. They did
not use annotations for synchronization; the direction of dataflow is dynamically
determined by what arguments have been instantiated upon call.

The above researches paid little attention to the determinacy of communicated
data, i.e., whether the bindings transmitted are the only possible ones or they
have alternatives. The determinacy of bindings, however, is very important from a
practical point of view. If many processes distributed on multiple processors are to
send and receive nondeterminate bindings, we must implement so-called distributed
backtracking, a mechanism for withdrawing already broadcasted bindings. Even
more importantly, data to be output to an external device must be determinate,
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because it is almost impossible to erase a sequence of characters once they are typed
out on paper.

One remedy to this problem is allow only determinate data to be output or
transmitted between processes. This restriction greatly simplifies implementation.
Relational Language (Clark and Gregory [1981]) introduced the guard mechanism
of Dijkstra [1975] for this purpose, as well as its successors PARLOG (Clark and
Gregory [1983]; Clark and Gregory [1984a]), Concurrent Prolog (Shapiro [1983al)
and Guarded Horn Clauses (Ueda [1985b]). Roughly speaking, all these languages
have the following features in common:

(1) Goals in each program clause are divided into guard goals and body goals.

(2) For any goal in a goal clause, only one of the program clauses that have solved
head unification (unification of the goal and the clause head) and guard goals
is allowed to solve its body goals. This mechanism is called committed-choice
nondeterminism, and the selection of one of the program clauses is called com-
mitment.

(3) When head unification and guard goals of some clause are executed to refute
a goal clause, they cannot instantiate the goal clause before commitment.

(4) As a consequence of (2) and (3), all bindings are determinate.

The above languages are different in the way in which (3) is guaranteed.
Relational Language asks a programmer to put an annotation on the generator
occurrence of a shared variable which they call a channel variable. Then it im-
poses three restrictions. Firstly, head unification must not bind a non-generator
occurrence of a variable in the goal; if this is violated, the clause becomes an input
suspended clause. Secondly, when head unification have succeeded, all the guard
goals must be instantiated to true ground atoms. Clearly the second restriction
guarantees that the guard goals generate no bindings. The third restriction is that
output bindings generated for the generator occurrence of a variable are applied to
the whole goal clause after commitment. Although not emphasized in the original
paper, the last restriction should not be overlooked; without it, output bindings
from different program clauses may collide.

PARLOG uses mode declaration instead of annotation. Each predicate must
have its own mode declared. Mode declaration declares each argument of a predicate
as input or output. Then the following restrictions are imposed. Head unification
must not generate bindings to the input arguments of the goal. If the head unifica-
tion can succeed only by violating this restriction, it suspends. Another restriction
is that guard goals cannot generate bindings to those input arguments either. A
guard (i.e., a set of guard goals) which satisfies this restriction is called a safe guard.
Although safety of a guard could be checked at run time, it is intended to be checked
at compile time. The third restriction is that bindings to the output arguments of
a goal are generated only after commitment.
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In Concurrent Prolog, the mechanism for synchronization and that for guar-
anteeing determinacy of bindings are provided independently. It employs read-only
annotation for synchronization. The annotated occurrence of a variable cannot be
instantiated to a non-variable term by the unification in which the occurrence is in-
volved. For determinacy, it uses the local (and multiple) environment mechanism.
Until commitment, bindings generated by head unification or guard goals which
would instantiate the goal clause are recorded locally, which form a local environ-
ment for each program clause. Since there may exist two or more local environments
at the same time which might bind the same variable to different terms, we must
implement a multiple environment mechanism. The locally recorded bindings can
be exported (i.e., applied) to the goal clause after commitment, but only one pro-
gram clause is allowed to do so. Thus all bindings given to the goal arguments are
determinate.

Guarded Horn Clauses guarantees the determinacy of bindings by making head
unification and guard goals suspend if they would otherwise instantiate the goal
clause. Chapter 4 contains a detailed explanation.

Let us compare these languages from other viewpoints. A communication chan-
nel of Relational Language allowed only one-way communication; if we want to re-
ceive answers of messages, we had to prepare another stream for them. Concurrent
Prolog enabled a more flexible way of communication by means of the back commu-
nication technique. The technique uses an incomplete message, a message with an
uninstantiated variable. When the generator of a stream instantiates its head to an
incomplete message, the consumer binds its uninstantiated variable to an answer.
Concurrent Prolog appears to be the most simple and flexible parallel logic pro-
gramming language of the ancestors of Guarded Horn Clauses at least syntactically,
so we will examine it in detail in Section 3.4.

While Concurrent Prolog realized back communication in a language with mul-
tiple environments, PARLOG realized the same feature in a single-environment lan-
guage. In addition, PARLOG showed a compilation technique for head unification
together with an algorithm for checking safety of a guard which is applicable for a
large class of programs.

Comparison of Guarded Horn Clauses with its ancestors will be made in
Chapter 5, in which we will go into more technical detail. Finally, we note that
the surveys of stream-AND-parallel logic programming languages can be found in
(Nitta [1984]) and (Gregory [1985hb]) also.
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3.4. Examination of Concurrent Prolog

In this section we scrutinize the language rules of Concurrent Prolog in Shapiro’s
original paper. The main result is that some sequentiality must be assumed for uni-
fication in order to reasonably define the semantics of unification and commitment.
This means that some ‘logical’ transformation of a program clause may change its
semantics. Another point is that there are semantical problems in multiple environ-
ments and a commitment operation. The results of this section are based on (Ueda
[1985a]) which is a substantially extended version of (Ueda [1984]). Problems with
the semantics of Concurrent Prolog are examined also by Saraswat [1985] indepen-
dently and from a different viewpoint.

3.4.1. Motivation and Method

In the previous sections, we have examined parallelism in logic programming in
general. Here we will go into more detail and examine one of the best-known par-
allel logic programming languages, Concurrent Prolog (Shapiro [1983a]). Thorough
examination of a specific language will help identifying subtle points in parallel logic
programming and will possibly justify designing an alternative language.

Concurrent Prolog was chosen because its language rules were very concise
and it looked expressive enough. We judged that it should be appropriate as the
first approximation toward the ultimate parallel logic programming language. Our
programming experience at Institute for New Generation Computer Technology
(ICOT) then showed that Concurrent Prolog was fairly expressive. However, we
have not examined whether it is really concise; it is still described very informally
except for the operational semantics by Hirata [1984]. A simple language rule
expressed in a natural language may be formalized into a set of quite complex rules.
Therefore, we must examine every subtle point of Concurrent Prolog and make
necessary clarifications or modifications.

We must consider the following points in the examination. Firstly, it must not
contain ambiguous or inconsistent rules. Secondly, it should be considered in the
light of both parallelism at the language level and parallel implementation. Thirdly,
since Concurrent Prolog is a programming language originated in Horn-clause logic,
we must consider to what extent the properties of logic programming in the original
sense are retained and how essential the deviation from Horn-clause logic is.

In the following, the language Concurrent Prolog will be re-examined in the
light of the above criteria. We will regard (Shapiro [1983a]) as the defining doc-
ument of Concurrent Prolog, since it is the original and the most detailed text.
The fundamental method of examining a language defined informally is to examine
every defining sentence thoroughly. This is quite useful for detecting problems in a
language definition; for example, the author applied the same technique to examine
the language rules of the preliminary version of Ada (Ueda [1982]).
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However, here we will not make comments sentence by sentence: Our purpose
is to try to obtain a correct semantics of Concurrent Prolog and not to criticize the
defining sentences. For this purpose, we examined other documents on Concurrent
Prolog by Shapiro [1984] and by Shapiro and Takeuchi [1983] also, but no significant
difference from the original document or new information which might help us to
reach the correct interpretation was found as for the materials discussed in this
section.

3.4.2. The Definition of Concurrent Prolog

This section introduces the syntax and the semantics of Concurrent Prolog as
described in the original paper (Shapiro [1983a]). We will quote important para-
graphs from that paper and number them for later references. Note that although
the language defined in (Shapiro [1983a]) was first called “a subset of Concurrent
Prolog”, it has simply been called Concurrent Prolog among the community ever
since.

3.4.2.1. Syntax

[1] (Section 3.1) A Concurrent Prolog program is a finite set of guarded clauses.
A guarded clause is a universally quantified axiom of the form

A - Gl,Gz,...,GmlBl,Bg,...,Bn. m,nz()

where the G’s and the B’s are atomic goals. The G’s are called the guard of
the clause and B’s are called its body. When the guard is empty the commit
operator is omitted. The clause may contain variable marked “read-only”.

[2] (Section 3.1) The commit operator generalizes and cleans sequential Prolog’s
cut. Declaratively, it reads like a conjunction: A is implied by the G’s and the
B’s. ...

3.4.2.2. Semantics

[2] (Section 3.1) ... Operationally, a guarded clause functions similarly to an al-
ternative in a guarded-command. It can be used to reduce process Al to a
system B if A is unifiable with A1 and, following the unification, the system G
is invoked and terminates successfully.

[3] (Section 3.1) ... The unification of a read-only term X? with a term Y is
defined as follows. If Y is non-variable then the unification succeeds only if X
is non-variable, and X and Y are recursively unifiable. If Y is a variable then
the unification of X7 and Y succeeds, and the result is a read-only variable.
The symmetric algorithm applies to X and Y'7.
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[4]

[5]

(6]

9]

(Section 3.1) This definition of unification implies that being “read-only” is
not an inherited property, i.e. variables that occur in a read-only term are not
necessarily read-only. Stating it differently, the scope of a read-only annotation
is only the principal functor of a term, but not its arguments. ...

(Section 3.1) The definition of unification also implies that the success of a
unification may be time-dependent: a unification that fails now, due to viola-
tion of a read-only constraint, may succeed later, after the principal functor
of a shared read-only variable is determined by another process, in which this
variable does not occur as read-only.

(Section 3.2) The execution of a Concurrent Prolog system S, running a pro-
gram P, can be described informally as follows. Each process A in S tries
asynchronously to reduce itself to other processes, using the clauses in P. A
process A can reduce itself by finding a clause A1 :- G | B whose head Al
unifies with A and whose guard system G terminates following that unification.
The system S terminates when it is empty. It may become empty only if some
of the clauses in P have empty bodies.

(Section 3.2) The computation of a Concurrent Prolog program gives rise to
a hierarchy of systems. Each process may invoke several guard systems, in
an attempt to find a reducing clause, and the computation of these guard
systems in turn may invoke other systems. The communication between these
systems is governed by the commitment mechanism. Subsystems spawned by a
process A have access only to variables that occur in A. As long as a process A
does not commit to a reducing clause, these subsystems can access only read-
only variables in A, and all binding they compute to variables in A which are
not read-only are recorded on privately stored copies of these variables, which
is not accessible outside of that subsystem. Upon commitment to a clause
Al :- G| B, the private copies of variables associated with this clause are
unified against their public counterparts, and if the unification succeeds the
body system B of the chosen clause replaces A.

(Section 3.2) A more detailed description of a distributed Concurrent Prolog
interpreter uses three kinds of processes: an and-dispatcher, an or-dispatcher,
and a unifier; these processes should not be confused with the Concurrent
Prolog processes themselves, which are unit goals.

(Section 3.2) The computation begins with a system S of Concurrent Prolog
processes, and progresses via indeterminate process reduction. After an and-
dispatcher is invoked with S, the computation proceeds as follows:

e An and-dispatcher, invoked with a system S, spawns an or-dispatcher for
every Concurrent Prolog processes A in S, and waits for all its child or-
dispatchers to report success. When they do, it reports success and ter-
minates.
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[10]

[11]

[12]

[13]

[14]

e An or-dispatcher, invoked with a Concurrent Prolog process A, operates
as follows. For every clause A1 :- G | B, whose head is potentially
unifiable with A, it invokes a unifier with A and the clause A1 :- G| B.
Following that the or-dispatcher waits for any of the unifiers to report
success. When one such report arrives, the or-dispatcher reports success
to its parent and-dispatcher and terminates.

e A unifier, invoked with a Concurrent Prolog process A and a guarded
clause A1 :- G | B, operates as follows. It attempts to unify A with A1,
storing bindings made to non read-only variables in A on private storage.
If and when successful, it invokes an and-dispatcher with G, and waits
for it to report success. When this report arrives, the unifier attempts to
commit, as explained below. If the commitment completed successfully it
reports success, but in either case it terminates.

(Section 3.2) At most one unifier spawned by an or-dispatcher may commit.

(Section 3.2) To commit, a unifier first has to gain a permission to do so. The
mutual exclusion algorithm must guarantee that if at least one unifier wants
to commit, then exactly one unifier will be given permission to do so. After
gaining such a permission, the unifier attempts to unify the local copies of
its variables against their corresponding global copies. If successful, then the
commitment completes successfully.

(Section 3.2) ... Another useful optimization is the deletion of brother unifiers,
once the first such process is ready to commit.

(Section 3.2) When committing, the unifier is not required to perform the
unification of the public and private copies of variable as an “atomic action”.
The only requirement is that the unification be “correct”, in the sense that it
should not modify already instantiated variables, which can be achieved in a
shared memory model with a test-and-set primitive.

(Section 3.2) Since a unification that currently fails may succeed later, the
phrase “attempts to unify” in the description of a unifier should be interpreted
as a continuous activity, which terminates only upon success. This can be
implemented using a busy-waiting strategy, but several optimizations can be
incorporated. ...

We correct a small error in Paragraph [9] here. An or-dispatcher should report

a set of processes B to its parent and-dispatcher instead of the simple message

“success”. The and-dispatcher must recognize these processes as newly created
processes which replace the original one, and must spawn or-dispatchers for them.
The and-dispatcher reports success and terminates when S is reduced to an empty
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set of goals. Alternatively, an or-dispatcher may invoke a new and-dispatcher for
the body of a clause whose corresponding unifier has reported success, and let the
report of this and-dispatcher be the report of the or-dispatcher in question.

3.4.2.3. Parallel Programming in Concurrent Prolog

[15] (Section 3.1) A system of processes corresponds to a conjunctive goal, and
a unit goal to a process. The state of a system is the union of the states
of its processes, where the state of a process is the value of its arguments.
And-parallelism—solving several goals simultaneously—provides the system
with concurrency. Or-parallelism—attempting to solve a goal in several ways
simultaneously—provides each process with the ability to perform indetermi-
nate actions. Variables shared between goals serve as the process communica-
tion mechanism; and the synchronization of processes in a system is done by
denoting which processes can “write” on a shared variable, i.e. unify it with a
non-variable term, and which processes can only “read” the content of a shared
variable X, i.e. can unify X with a non-variable term 7" only after X’s principal
functor is determined, possibly by another process. ...

3.4.3. Multiple Environments and a Commitment Operation

A commitment operation as described in Paragraphs [11] and [13] is a process
rather than an event. It is preceded by the permission, and it completes when the
unification of local and global copies of variables has terminated successfully. It is
not explicitly specified when the commitment starts, but it should be some time
after the permission and not later than the start of the unification.

The most controversial issue is the nature of the permission. The second sen-
tence of Paragraph [11] says that the mutual exclusion algorithm must guarantee
that if at least one unifier wants to commit, then exactly one unifier will be given
permission to do so. However, it is not clear whether

(1) this permission is revoked when the unification of local and global copies of vari-
ables does not succeed, thus providing the other clauses with the opportunity
of commitment, or

(2) this permission is eternal, i.e., the other clauses can no longer attempt a com-
mitment operation once some clause has gained a permission.

The failure of the unification can happen when a global variable is further
instantiated by some other goals after its local copy is created, but Paragraphs
[7], [9], and [11] define only the successful case. If the permission is never revoked,
failure of the unification means the failure of its grandparent and-dispatcher, i.e., the
parent of its parent or-dispatcher. If the permission can be revoked, the unification
must be performed in a way in which the intermediate result of the unification is
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invisible from other processes. This is because this unification may eventually fail,
in which case the other clauses must retain the possibility of commitment.

Paragraphs [5] and [14] say that unification is a continual activity which ter-
minates only upon success. So one interpretation could be that the commitment
operation is also a continual activity which terminates only upon success of the
unification involved in it. This suggests that the permission need not be revoked.
However, this interpretation is unfortunately inconsistent with the description in
Paragraph [9] that the unifier terminates whether or not the commitment completed
successfully, though Paragraph [9] is problematic in that it does not say at all how
the unifier can terminate when the commitment has not completed successfully.

The complete lack of the description of a locking operation, which is shown
below to be necessary if the permission can be revoked, suggests that the permission
is of an eternal nature. However, the interpreter shown in (Shapiro [1983a]) adopts
the opposite interpretation. It seems impossible to derive a correct answer from the
original description; the better way should be to make a thorough examination of
the merits and demerits of the both alternatives.

3.4.3.1. The First Alternative: Permission Is Revocable

We first assume that the permission of commitment is revoked when the unifi-
cation of local and global copies of variables does not succeed. When the permission
is revoked, the intermediate result of unification must be kept invisible from other
goals. Since it is only upon success of the unification that the revocation of the per-
mission is known to be unnecessary, we must always perform the unification of local
and global information in a way in which its partial result is invisible from other
goals. The problem is how to implement a commitment operation which meets the
above requirement.

The only possible solution seems to be to perform the following operations in
the given order:

(a) Lock (at least) all the relevant global data, that is, all variables appearing in
goal arguments for which local copies have been made.

(b) Try to export local bindings by unifying local copies with its global counterpart.
This could start before Step (a) is finished, as long as no bindings are made to
unlocked global variables.

(¢) If the unification is successful, do (c1); else do (¢2):

(c1) If the unification is successful, then simply unlock the global data locked
in Step (a).

(¢2) If the unification is unsuccessful, then undo all the bindings made in Step
(b), and then unlock the global data locked in Step (a). The unlocking can
start before undoing is finished, as long as no global variable is unlocked
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without being unbound. Independently of these operations, return the
permission of commitment.

The problem lies in the locking operation in Step (a). The simplest locking scheme
would be to lock the whole memory whenever commitment is attempted, but this
is definitely unacceptable because it serializes all commitment operations. If we do
not want to lose parallelism, we must minimize the locked area.

The smallest unit of locking is a single variable. However, variable-by-variable
locking is not easy when we have to lock two or more variables in one commitment
operation, as studied in the area of distributed databases and operating systems.
Assume there are two clauses (say Cy and Cy) attempting to be selected and that
both of them must lock the variables X and Y. If C; tries to lock X first and Cy
tries to lock Y first, they may deadlock.

This deadlock problem can be easily resolved if we can order the variables. If
we can give an invariant order to a set of variables to be locked, each clause has
only to lock them in that order. However, it is hard to consider such an invariant
order, because two variables may be unified at any time and after that the unified
two variables must have the same order. All the above considerations lead us to the
conclusion that the first alternative is unacceptable.

One may think we could detect ununifiability of local and global information
earlier than commitment. This is enabled by checking unifiability of the local and
the global values of a variable whenever new global or local binding for that variable
is created. However, this ‘eager’ checking never eliminates the unification upon
commitment, and this unification must still satisfy all the requirements we stated
above.

3.4.3.2. The Second Alternative: Permission Is Eternal

Let us then consider the other alternative that the permission of commitment
is of an eternal nature. We no longer need locking operations because it is now
impossible for the other clauses to export bindings later. Unification may be done
just in a usual manner. This alternative increases the chance of failure of a program
in which two or more conjunctive goals try to instantiate the same variable upon
commitment. However, it does not cause so much inconvenience. Most predicates
we have written are effectively (possibly nondeterministic) functions each of which
returns only one result. Such a result may be prepared in a guard and exported
upon commitment, but we usually receive it by a variable, in which case no failure
can happen.

However, there still remain some semantical problems. Although it is unnec-
essary to return a permission of commitment once it is obtained, we have to define
when a ‘unifier’ (in terms of Paragraph [9]) can attempt to gain such a permission.
In other words, we have to define what kind of global information supplied from goal
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arguments must be respected when we regard head unification and the execution of
a guard as successful. Some information which may come later than the attempt of
commitment could be ignored, but other information which is evidently available
must be considered for clause selection. Consider the following goal:

i~ p(a). (3.4.31)

This goal says two things: call the unary predicate ‘p’ and set its argument to ‘a’.
The question is whether or not the argument setting must be completed before the
call. This is not an absurd question; we are examining Concurrent Prolog as a truly
parallel language. If the argument setting must precede the call, the above goal
never fails when the predicate ‘p’ is defined as follows:

p(a). (3.4.3-2)
p(b) . (3.4.3-3)

Only Clause (3.4.3-2) succeeds in head unification.

However, if the argument value may be determined arbitrarily late, the above
goal may fail. Clause (3.4.3-3) may be tested earlier, and the value ‘b’ in the head
may be recorded locally for later unification if the corresponding goal argument
has not been determined. In this case ununifiability of ‘a’ and ‘b’ will be detected
after Clause (3.4.3-3) has gained a permission of commitment, and the original goal
finally fails. To generalize, any program clause can be selected for a given goal as
long as its guard succeeds, and can make the whole system fail. This should be
extremely inconvenient, because we cannot write a predicate like ‘p’ intended to
check the values of its arguments.

Therefore, at least any information specified textually in a goal must be con-
sidered for clause selection, i.e., any inconsistency with local information must be
detected before attempting a commitment operation. This means that Clause
(3.4.3-3) in the above example must detect inconsistency between ‘a’ and ‘b’ at
head unification and must never create a local copy of its argument as long as the
permission of commitment is not revocable.

Note that the above conclusion applies also to our first alternative on the
semantics of commitment that the permission of commitment is revocable. For if
we allow delay of the determination of an immediate argument value, it may be
determined too late—after commitment has completed.

The question of allowed delay of information is related to the semantics of the
unification of Concurrent Prolog, and it will be discussed further in Section 3.4.4.

3.4.3.3. Access to Local/Global Information

Another problem which arises by allowing local and global copies of a variable
is to which copies we must have access in each of the following cases:
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(1) A variable in a goal is textually marked read-only.

(2) A variable in a goal is not textually marked read-only and its local copy has
been made.

(3) A variable in a goal is not textually marked read-only and its local copy has
not been made.

The first possibility for a goal variable is that it is marked read-only textually.
Then candidate clauses must watch its global value. This is necessary for making
suspended unification succeed and putting computation forward. For such a vari-
able, local copies are not created (with the exceptional case shown below), since no
bindings can be given directly to read-only variables in a goal from a clause head
or a guard.

However, there also exists a rather pathological case where a local copy must
be created for a read-only variable. Consider the following example:

Goal: - p(X?, X), X = a. (3.4.3-4)
Program: pla, A) :- A = a | true. (3.4.3-5)

The predicate ‘=" unifies its two arguments. The first argument may be instantiated
in two ways:

a) global instantiation by the goal ‘X=a’ running in parallel, and
g y g g p )
(b) local instantiation by the goal ‘A=a’.

In the second case, a local copy of X, which appears with (and without) read-
only annotation, must be created. Note that the goal ‘A=a’ must locally instantiate
the first argument: The goal textually specifies that its two arguments be identical
(except for the annotation), so this identity must be respected for clause selection
as we concluded in Section 3.4.3.2. This example illustrates also that suspension
of unification due to a goal variable marked read-only may be resolved in two
ways, globally and locally. Hence it is generally inadequate to wait only for global
instantiation of a read-only variable; we have to implement multiple waits.

The second possibility for a variable contained in a goal is that it is not marked
read-only textually and that some clause has created its local copy. In this case, that
clause should see the local copy. Ignoring it and seeing only its global counterpart
might suspend some unification which would otherwise succeed. However, it is not
clear whether the clause should be allowed to see also the global value which may
get instantiated after the local copy is created. Paragraph [7] seems to disallow it,
but it is possible that the clause can solve its guard only by using the global value
of some variable for which a local copy has been made.

The third possibility is that a variable contained in a goal is not textually
marked read-only and that its local copy has not been created either. This is
further divided into two subcases:
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(a) The variable is uninstantiated when head unification starts.

(b) The variable has become non-variable or read-only when head unification starts.
For each case, there are three possible interpretations:

(1) The clause should watch its global instantiation.

(2) The clause can ignore it.

(3) The clause should ignore it.

Paragraph [7] seems to support Alternative (3) for Case (a) and Alternative
(1) for Case (b).

Let us consider Case (a) first. Alternative (3) implies that the value of a
variable in a goal which has become read-only or become non-variable after the
goal is called should be ignored. For instance, the following program

- p(X), X = a. (3.4.3-6)
p(X) :- X? = a | true. (3.4.3-7)

should never succeed as long as p(X) is called before ‘X=a’ is executed.

However, we cannot adopt the same alternative for Case (b). In this case, the
value of the variable in the goal should not be ignored. Otherwise, the ‘protected
data’ technique (Hellerstein and Shapiro [1984]) (Takeuchi and Furukawa [1985])
would not work correctly.

Typical use of read-only annotation is to attach it to the argument variables
of goals which consume (or decompose) the value of those variables. However, the
protection against instantiation by the consumer can be achieved also by making
the generator of a data structure protect its uninstantiated part, and ‘protected
data’ mean such uninstantiated but protected variables created by the generator.
When we use this technique, read-only annotations do not appear textually in the
consumer goal (except for the top level) but it is sent from the generator goal. If
such dynamic protection should be ignored as Alternative (3) says, this technique
could not be used.

Cases (a) and (b) can occur depending on the relative timing of head unification
and the instantiation of a variable in the goal (by some other goal). Moreover, head
unification is not an instantaneous operation, so it is undesirable to assign the
mutually exclusive behaviors (1) and (3) to these two cases. Alternative (1) or (2)
should be a better choice for Case (a).

Our claim that Alternative (3) is undesirable could be understood and justified
also from the following observation. If Clause (3.4.3-6) were given as

i~ p(a). (3.4.3-8)
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it should succeed because the textually specified argument value must not be ig-
nored. This means that partial evaluation of ‘X=a’ in Clause (3.4.3-6) to get Clause
(3.4.3-7) undesirably changes the semantics of the program from suspension to
success.

3.4.4. Atomic Operations in Unification

The semantics of unification must clearly state what are atomic operations.
Consider the following unification:

= ..., X = f(a), ... (3.4.4-1)

How can this unification be performed, assuming that X are uninstantiated? Possible
solutions may be:

(1) Create a term f(a) (in any manner). Then set X to this term.

(2) Create a term f£(A?) where A is a fresh variable. Then set X to this term, and
in parallel with this set A to ‘a’.

(3) Create a most general unary term with the principal function symbol ‘f’. Call
its argument A (this is not part of the operation). Then set X to this term, and
in parallel with this set A to ‘a’.

Alternative (1) regards the unification of a variable and a non-variable term
as an indivisible operation. Alternative (2) tries to allow the principal function
symbol and its arguments to be determined in parallel, but it protects non-variable
arguments by read-only annotation. Alternative (3) states that the above unification
can be done as if it were specified as follows:

- ..., X =f(A), A=a, ... (3.4.4-2)
where A is a variable not appearing elsewhere.

Let us explain the differences among these alternatives in other words. Alter-
native (1) says that when the principal function symbol of the value of some variable
has been determined, the values of its arguments have also been determined as long
as they are specified texually at the same place as the principal function symbol.
Alternative (2) says that the argument values may come later, but that the unin-
stantiated fresh variables appearing in the transient state are protected. Alternative
(3) says that the arguments may come later and that the variables are not protected.

Note that for unification between two non-variable terms also, we can conceive
three alternatives corresponding to the above ones.

The granularity of atomic operations is smallest in Alternative (3) and largest in
Alternative (1). So, Alternative (3) seems to be the best under the ‘high-parallelism’
criterion. We will see in Section 3.4.4.1, however, that Concurrent Prolog cannot
adopt Alternative (3).
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One remark on parallelism in unification must be made here. It is known
that the unification problem has a sequential nature in general, that is, parallelism
cannot significantly help (Dwork, Kanellakis and Mitchell [1984])(Yasuura [1984]).
However, this result should not discourage finding a good formulation of unification
in parallel logic programming languages.

3.4.4.1. The Smallest Granularity Alternative

We have seen in Section 3.4.3.2 that any information textually specified in a
goal must be available when head unification commences. To put it differently, a
goal can be called only after all its arguments have been loaded. Thus the clause

- p(a). (3.4.4-3)
and the clause
- p(X), X=a. (3.4.4-4)

should be defined as different. The word ‘different’ may be too strong, but at least
we can say that Clause (3.4.4-3) is more restrictive than Clause (3.4.4—4). The
above difference is related to the semantics of the unification of a goal and a clause
head, so the conclusion of Section 3.4.3.2 should be regarded as claiming also that
the following two goals be different:

:— Head
:— Head

p(a). (3.4.4-5
p(X), X=a. (

This claim clearly rejects Alternative (3).

The following example would better show the importance of whether informa-
tion is textually specified in a goal or not:

= ..., p(A?D), ... (3.4.4-7)

We have attached a read-only annotation to A not simply because we do not want A
to be instantiated by ‘p’ but because we want the predicate ‘p’ to wait and respect
the value of A for clause selection unless the clause selection can be done without any
reference to the argument value. Therefore, we can never rewrite Clause (3.4.4-7)
to

= ..., p(X), X=A?7, ... (3.4.4-8)
even though the ‘read-only’ property is inherited by unification.

Among important concepts in programming languages is referential trans-
parency, which means that if expressions F; and Fs denote the same value in
the same context, we can textually replace F; in a program by F,. Referential
transparency in logic programming languages, if any, would require the following
property: Whenever a term E appears in some goal, we can replace E by a fresh
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variable X and in conjunction with that goal put a new goal which unifies X and F.
The above example, however, shows that this property does not hold in Concurrent
Prolog.

It has long been claimed that logic programming languages provide a good
framework for mechanical handling of programs such as program synthesis and
program transformation. So, properties such as referential transparency should be
respected as much as possible. Losing it would make the language rules complex
and mechanical handling of programs more difficult.

3.4.4.2. Other Alternatives

What Alternative (2) means is as follows. Determination of a principal func-
tor and the setting of its arguments can be done in parallel, but when the principal
functor is determined and its arguments become accessible, they must be ‘protected’
if necessary, that is, if they are to be instantiated further. This solution looks con-
sistent with the requirement that any information textually specified in a goal must
be respected for clause selection, while retaining parallelism inherent in unification.

However, we will examine in more detail. The problem is that this solution
is rather ad hoc and that it exploits only a limited part of parallelism lost in
Alternative (1). Arguments to be filled with non-variable terms can be protected
by read-only annotations. However, there seem to be no means to protect the two
arguments of ‘q’ in the following example.

= q(Y, Y). (3.4.4-9)
This should not be defined as identical to
:- q(A, B), A = B. (3.4.4-10)

because Clause (3.4.4-9) textually specifies that the two arguments of ‘q’ be iden-
tical, while Clause (3.4.4-10) has moved this information out of the goal. Clause
(3.4.4-9) cannot select the clause

q(a, b). (3.4.4-11)
to reduce itself while Clause (3.4.4-10) can.
Clause (3.4.4-9) is not identical to the following one either:
.- q(A?7, B?), A = B. (3.4.4-12)
This is too protective. Clause (3.4.4-9) can select the clause
q(a, a). (3.4.4-13)
while Clause (3.4.4-12) cannot.

Considering all the above problems, Alternative (1) seems to be the best so-
lution in Concurrent Prolog. When the value of the principal functor is available,
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any textually specified information on its arguments should be available also. This
means that some sequentiality must be assumed for unification.

The above result urges us to examine the semantics of so-called ‘metacall’, i.e.,
a feature for ‘call’ing some term (say T') as a goal. The goal T will be possibly
incrementally generated by some other goal. So we must have some means to guar-
antee that all the argument information which should be assumed to be textually
specified in the goal has been set up to T. Serialization by the commit operator
will have to be used for this purpose. The following examples illustrate this.

Goal (a): = p. (3.4.4-14
Program (a):  p :- G=p(X), X=5 | call(G). (3.4.4-15

)
)
Goal (b): := p(G), call(G?). (3.4.4-16)
Program (b):  p(G2) :- G2=p(X), X=5 | true. (3.4.4-17)
In both of the above examples, it is possible to regard G as having the value p(5)
right after commitment. So the goals call(G) and call(G?) can be defined to

work as if they were specified textually as p(5).

To generalize, the value of a variable which is guaranteed to exist right after
commitment can and should be treated as a textually specified value after that. The
value of a variable which is guaranteed to exist is the value formed by the bindings
made by unifications which is guaranteed to be finished by the language rules. The
readers may think that the above discussion is too obvious, but it is never the
case. In Clause (3.4.4-16) above, the value of G is determined upon commitment
by unification. However, as we have seen so far, it is not at all clear whether the
principal functor ‘p’ and the argument value ‘5’ arrives at the goal ‘call(G?)’ at the
same time or not. This depends on the semantics of commitment and the semantics
of unification, both of which are most delicate.

So far we have defined the semantics of unification involving non-variable terms.
We must further define the property of logical variables.

We may well be tempted to define the semantics of the goal
- p(X), q(X?). (3.4.4-18)
as equivalent to
- p(X), X=Y, q(¥?). (3.4.4-19)

because they are ‘logically’ identical. Defining these two goals as identical means
that communication by shared logical variables may have potential delay. This
delay is allowed in Guarded Horn Clauses described in Chapter 4, but in Concurrent
Prolog this cannot be allowed.

Firstly, (Shapiro [1983a]) seems to assume no delay for shared variables, since
it contains the specification of binary merger as follows (only recursive clauses are
shown):
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Goal: :- merge(As?,Bs?,Cs). (3.4.4-20)
Program: merge([X|Xs],Ys,[Z|Zs]) :- merge(Ys,Xs?,Zs). (3.4.4-21)
merge (Xs, [Y1Ys],[Z|Zs]) :- merge(Ys?,Xs,Zs). (3.4.4-22)

If we allow delay, the first argument Ys in the body goal of Clause (3.4.4-21) will
be instantiated by the head argument ‘[X|Xs]’ of the same clause upon recursive
call. If there is no delay, it cannot be instantiated because Ys has been unified
with Bs? in the head unification. Secondly, the ‘protected data’ technique also
assumes that there is no delay between two or more occurrences of a shared variable.
For otherwise the information of protection would be delayed and hence might be
violated.

Therefore, we must not assume any delay for shared variables: All occurrences
of the same variable must denote the same value at the same time. We consider
that allowing delay for shared variables, even though possible, would considerably
change the rules of Concurrent Prolog, which would amount to designing another
language.

3.4.5. Processing Heads and Guards

It must be clearly specified what kind of parallelism should be allowed for pro-
cessing heads and guards. In this regard, the semantics of Concurrent Prolog shown
in Section 3.4.2.2 and (Shapiro and Takeuchi [1983]) has the following problems.

3.4.5.1. Head Unlification

The rules of Concurrent Prolog do not mention the order of unification of head
arguments at all. At least four solutions seem to be candidates:

(1) Head unification is performed in parallel. A pseudo-parallel implementation is
allowed, but no sequentiality is assumed conceptually.

(2) Head unification is performed sequentially in some order not defined by the
language. The implementation can arbitrarily choose one of the possible orders.
A program that depends on a particular order is erroneous.

(3) The mixture of (1) and (2) above. That is, the head unification is performed se-
quentially in some order, or in parallel. A program that depends on a particular
strategy is erroneous.

(4) The head unification is performed sequentially, from left to right.

Solution (1) is preferred because sequentiality in the language rule should be
minimized according to the principles stated in Section 3.4.1. The set of possible
results of the execution of a program should remain unchanged when we systemati-
cally change the order of arguments of some predicate throughout the program and
a goal clause. The ‘result’ mentioned above may include at least the following;:
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(a) Whether the computation terminates or not,
(b) If it terminates, whether it succeeds or not, and
(c) If it succeeds, what bindings are made to the variables in the goal clause.

Solution (1) influences allowable implementations: Sequential unification from
left to right becomes inadequate. Consider the following example:

Goal: - pla, a). (3.4.5-1)
Program: p(A?, A). (3.4.5-2)

The left-to-right head unification suspends while the rule states it must succeed.

In fact, any implementation of head unification which assumes a specific order
is inadequate. For example, there is no specific order in which both of the following
two goals succeed:

Goal (a): ;- p(A, A?). (3.4.5-3)
Goal (b): ;- p(A?7, A ). (3.4.5-4)
Program: pa, a). (3.4.5-5)

Note that the above arguments apply to any unification performed in computation,
for example unification upon commitment (see Section 3.4.2).

3.4.5.2. Head Unification and Guard Execution

The rules of Concurrent Prolog specify that the execution of a guard start
after head unification has succeeded (Section 3.4.2.2, Paragraphs [2], [6] and [9]).
We propose a different solution: Head unification and the execution of a guard are
done in parallel. The reasons follow.

Consider the following example:

Goal: - pla, a). (3.4.5-6)
Program (a): p(A, B) :- A=X?, B=X | true. (3.4.5-7)
Program (b): p(X?, B) :- B=X | true. (3.4.5-8)
Program (c): p(X?, X). (3.4.5-9)

According to (Shapiro [1983a]), Program (a) succeeds and Program (b) suspends.
Program (b) suspends because the unification B=X is performed only after the uni-
fication a=X? has succeeded. The result of (c) is not specified. If the unification of
arguments is allowed to be performed sequentially, Program (c) may suspend; if the
unification must be performed in parallel (as we recommended in Section 3.4.5.1),
it succeeds. However, why should these three programs be not identical?

We propose to define (a) as a standard form of (b) and (c), and to make all
the above programs succeed. The standard form of a clause must have a head
whose arguments are distinct simple variables. Clauses (b) and (c¢) are considered
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as shorthand of (a). One justification of this proposal is that all these clauses are
‘logically’ identical. Defining the semantics of a clause in terms of its standard
form will simplify the description of the semantics. The similar approach has been

adopted in PARLOG (Clark and Gregory [1984a]).

Our proposal could be justified also from a practical point of view. Each clause
performs head unification and executes its guard to determine whether it can be
selected. Looking back our programming style, we usually write in the head what
we can write either in the head or the guard, and we write in the guard only what
we cannot write in the head. An example of the former is the syntactic check of
an input argument, and an example of the latter is the arithmetic comparison of
two input values. As far as we see, this choice has been made solely by the content
of the check. There seems to be no program that cannot be written without using
the fact that head unification precedes the execution of a guard. The only reason
why we use head unification for more than argument passing is that the use of head
unification is good for concise description.

3.4.6. Unification of Two Read-Only Variables

Paragraph [3] does not explicitly state the semantics of unification of two read-
only variables. Kusalik [1984] took up this subject and argued that if a clause such
as

p(X?) :- guard( ... X ... ) | body. (3.4.6-1)
is to be allowed, the head unification invoked by the call

:— p(A?). (3.4.6-2)
should succeed. Then he proposed two possible revisions:

(a) Let the unification of two read-only variables X? and Y7 succeed, and make
X and Y (identical) non-read-only variables.

(b) Disallow read-only variables appearing in a head.
However, neither of these solutions is desirable:
(a) Assume that
:- X?=Y?, X=a. (3.4.6-3)

is executed. If X?7=Y7? is executed first, X and Y become an identical non-read-
only variable. This means that the annotated variable Y? becomes instantiated
by the partner of the unification by the execution of X=a, which is inconsistent
with the general property of annotated variables.

(b) As Kusalik himself says, a read-only variable in a head has useful applications
(Hellerstein and Shapiro [1984])(Takeuchi and Furukawa [1985]) and should not
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be prohibited. Moreover, disallowing read-only variables in a head destroys the
symmetric nature of unification.

An alternative solution to (a) might be to let the unification of two read-
only variables succeed and then to make them identical read-only variables. This
preserves the propagative nature of read-only annotations. However, consider the
following goal:

:— X?=Y?, X=a, Y=a. (3.4.6-4)

This goal suspends if X?=Y7 is executed first, and succeeds otherwise. This is a
new, undesirable kind of nondeterminism which arises from the order of unification:
Besides this, the only source of nondeterminism is the commitment operation.

Shapiro’s original interpreter makes the unification of two read-only variables
suspend. This solution looks better than any of the above alternatives, but Aida
[unpublished| and Tanaka [unpublished] claimed that the unification of two iden-
tical read-only variables should succeed. Tanaka implemented Concurrent Prolog
(Tanaka, Miyazaki and Takeuchi [1984]) and found that it is inconvenient that the
goal

;- X=Y7, X=Y7. (3.4.6-5)
suspends while the goal
i X=Y7. (3.4.6-6)

succeeds. So the best solution will be to let the unification of two read-only vari-
ables suspend unless these read-only variables are identical, in which case it should
succeed.

One consequence of this slight revision is that the implementation might be-
come complicated a little bit. Without the revision, suspension is released only
when the read-only variable which caused the suspension gets instantiated to some
non-variable term. Now suspension can be released also when the read-only vari-
able that caused the suspension is unified with some other variable, as long as the
suspension is caused by unification between two read-only variables.

Let us consider the goal ‘X?=Y?" for example. This goal suspends if X and Y
are both uninstantiated and not identical. One way to release this suspension is
to instantiate both X and Y to non-variable terms. Our claim is that now there is
another way to release the suspension, that is, to unify X and Y. This means that the
suspended goal ‘X?=Y?’" must watch bindings of X and Y to uninstantiated variables
as well as to non-variable terms.

3.4.7. The Predicate ‘otherwise’

The predicate ‘otherwise’ was first introduced in (Shapiro and Takeuchi
[1983]). An ‘otherwise’ goal that occurs in a guard succeeds if and when all other
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parallel-Or guards fail. The commonest use of this construct will be to use only one
‘otherwise’ as the sole guard goal of the last clause which handles the ‘default’ or

‘exceptional’ case. However, the above simple rule is not so restrictive; it implies
the following:

(1)

(2)

‘otherwise’ can appear in a clause other than the last clause: There is no
order among clauses constituting a program.

‘otherwise’ need not appear as the sole goal in a guard. If the guard of a clause
containing ‘otherwise’ contains other goals, that clause may not be selected
even if all the other clauses have failed. However, the clause with ‘otherwise’
cannot anyhow cover all exceptional cases without restricting the clause head
to the most general one, and there seem to be no reasons to restrict the form of
a clause with ‘otherwise’. The only possible restriction might be to prohibit
two or more ‘otherwise’ goals in one guard, since this is harmless but useless.

‘otherwise’ can appear in more than one guard. Assume that the following
clauses are contained in the definition of ‘p’

p(nil, ...) :- otherwise | ... (3.4.7-1)
p(cons(A,B), ...) :- otherwise | ... (3.4.7-2)

and that all other clauses are proved to be unselectable. Then, if the first
argument of ‘p’ is ‘nil’, Clause (3.4.7-1) will be selected since Clause (3.4.7-2)
is unselectable. If the first argument of ‘p’ has the form ‘cons(X,Y)’, Clause
(3.4.7-2) will be selected. Of course, if two clauses which are not mutually
exclusive have ‘otherwise’ goals in their guards, deadlock may result:

p(X, Y) :- otherwise | ... (3.4.7-3)
p(X, Y) :- otherwise | ... (3.4.7-4)

It is, however, the responsibility of a programmer to avoid such deadlock.

Although the original definition may look too general, it is recommended for its

simplicity. It is easy to implement: ‘otherwise’ needs only to monitor the number
of failing clauses and succeeds when it reaches the number of the other clauses. We
know that this construct is useful for writing non-trivial programs, but we must
examine further where the generality of ‘otherwise’ stated above is really useful.

3.4.8. Summary

We have discussed some subtle points on Concurrent Prolog. In Section 3.4.3,

we examined the semantics of multiple environments and a commitment operation.
We showed that we have to further define at least the following things:

(1)
(2)

Timing of unification of local and global information,

Availability of the values of goal arguments for clause heads and guards, and
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(3) Access rule to local and global copies of variables

In Section 3.4.4, we examined the semantics of unification and the allowed
communication delay between two or more occurrences of a shared variable. We saw
that a non-variable term (say T') specified in a source text must have an ‘indivisible’
nature: The unification of T" with some variable must be done as an atomic action.
To put it differently, we must assume some sequentiality for unification. Another
conclusion is that all the occurrences of the same variable must denote the same
value at the same time. We must not assume delay for a shared variable which is
instantiated by some goal and whose value is referenced by another goal. These
conclusions mean that some transformation of a program clause allowed in the
declarative reading may change its semantics.

In Section 3.4.5, we considered how to execute head unification and the corre-
sponding guard. In Section 3.4.6, we examined the semantics of unification of two
read-only variables. In Section 3.4.7, we examined the semantics of the predicate
‘otherwise’.

It must be noted that the arguments in this section apply also to Flat Concur-
rent Prolog (Mierowsky, Taylor, Shapiro, Levy and Safra [1985]). Flat Concurrent
Prolog is different from Concurrent Prolog in that only predefined test predicates
are allowed in guards. Management of nested environments is no longer necessary,
and implementation on a sequential machine is greatly simplified by doing clause
selection as an indivisible operation. However, Flat Concurrent Prolog never re-
moves the need of multiple environments conceptually, since head unification may
instantiate global variables. Therefore, if Flat Concurrent Prolog is intended to be
a language for a parallel machine, it must resolve the problems discussed in this
section.

The results of this chapter should be helpful for defining the precise semantics of
Concurrent Prolog. However, the resulting semantics would be more complex than
we thought even if it is defined informally, and it would require considerable efforts
to have a formal semantics. An alternative research direction will be to revise the
language. The language Guarded Horn Clauses described in Chapter 4 was designed
in this direction. It abolished the multiple environment mechanism and read-only
annotations at the same time, and has become a much simpler language with slight
loss of the expressive power.
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Chapter 4
GUARDED HORN CLAUSES

As we examined in Section 2.1, a set of Horn clauses allows procedural inter-
pretation (Kowalski [1974]). It was given a semantics as a sequential programming
language by Prolog (Roussel [1975]), and Prolog has proved to be a simple, pow-
erful, and efficient sequential programming language (Warren, Pereira and Pereira

[1977)).

As Kowalski [1974] points out and we discussed in Section 3.2, a Horn-clause
program allows parallel or concurrent execution as well as sequential execution.
However, the discussions in Sections 3.2 and 3.3 revealed that a set of Horn clauses
as it stands is inadequate for a parallel programming language which is capable of
expressing important concepts such as processes, communication, synchronization,
and input/output. We need to control AND-parallelism by some mechanism to
express these concepts. Several mechanisms have been proposed as we surveyed in
Section 3.3.2, but this chapter shows that only one construct, guard, is adequate
for our purposes.

In this chapter, we introduce guarded Horn clauses. The name Guarded Horn
Clauses (abbreviated to GHC) will be used also as the name of the language. We de-
scribe its design principles, syntax, semantics, program examples, and justification
of the language design. Moreover, we mention possible extensions and implementa-
tion issues. Comparison of GHC with other logic/parallel programming languages
will be made in Chapter 5.

4.1. Principle-Oriented Approach to Language Design

When we design a programming language, there will be at least three possible
approaches. One is an implementation-oriented approach. A practical language
must allow efficient implementation on an existing hardware. Therefore, it must
not contain any feature whose implementation is very hard or impossible on an
intended hardware, which should be one of the most important constraints on the
design of an efficient language. Another is an application-oriented approach. When
we have a specific application domain at hand, we desire a good language in which
problems to be solved can be elegantly formulated.

The third approach could be called a principle-oriented approach. In a
principle-oriented approach, we first establish several principles or constraints on
language features to be designed. Of course, these principles could include imple-
mentability and/or applicability; the point is that a language design must also have
many external and internal constraints which are important solely from a program-
ming language point of view. For example, a theoretical language must have a
rigorous mathematical foundation; a general-purpose language should provide ex-
pressive power in general; a language for huge software will have to provide facilities
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for declaring inter-module specification and for checking it; and any language must
be self-consistent—it must include no features whose effects and the effects of whose
interaction are not well defined. Principles provide a language designer with a basis
on which to design, review, and compare languages. They also help a language user
understand the language—why some feature has been designed so and why another
is missing.

4.2. Design Principles

Our goal is to obtain a programming language that expresses parallelism and
allows parallel execution wherever it is possible. We base our language on Horn-
clause logic and a resolution principle in the hope that this assumption leads us to
a good solution.

Our language is expected to fulfill the following requirements:

(1) PARALLELISM. It must be a parallel programming language ‘by nature’. It
must not be a sequential language augmented with primitives for parallelism.
That is, the language must assume as little sequentiality among primitive op-
erations as possible, in order to preserve parallelism inherent in Horn-clause
logic. This would lead to a clearer formal semantics, as well as to an efficient
implementation on a novel architecture in the future.

Note that formulation of the underlying concepts as described in theoretical
books may not consider parallelism very well. For example, Robinson’s unification
algorithm (Robinson [1965]) is sequential and books on mechanical theorem proving
do not usually say when and how resolution can be done in parallel. This is why
we examined parallel execution of logic programs in Section 3.2.

Two remarks related to implementation must be made. Firstly, the above
requirement on parallelism is a requirement at the level of a programming language,
and it does not require all the parallelism to be exploited in implementation. It is
even desirable that a compiler for a sequential computer generates a sequence of
codes for a set of operations which need not be executed in pseudo-parallel. Such
sequentiality in implementation is considered an optimization in the framework of
parallel languages (see Section 3.1).

The other remark is that a truly parallel language may have to allow possibly
useless computation. This is because it seems impossible to distinguish between
useful and useless computation without assuming a specific implementation once we
allow unrestricted parallelism. An example is the prefetching of instructions done
by a processor unit. Although prefetched instructions may be just discarded when
a branch instruction is executed, they are usually a source of efficiency and hence
prefetching is considered generally useful. If we disallow any useless computation,
computation becomes highly sequential and we lose efficiency which is the original
purpose of parallelism. Therefore, any computation which may be effective must
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be allowed. Moreover, since it is unlikely that we can generally judge whether
some computation may or cannot be utilized in the future, we have to allow any
computation as long as it does no harm.

We go to the next principle.

(2) GENERAL-PURPOSE LANGUAGE. It must be an expressive, general-purpose
parallel programming language. In particular, it must be able to express
important concepts in parallel programming—processes, communication, and
synchronization. Moreover, a program must be able to communicate with the
outside world, especially with human beings.

As explained in Section 2.4.9, human-computer communication is important
as well as communication within a computer, and it is desirable to treat them
uniformly from the following principle.

(3) SIMPLICITY. It must be a simple parallel programming language. We do not
have much experience with either theoretical or pragmatic aspects of paral-
lel programming. Therefore, we must first establish a foundation of parallel
programming on a simple language.

We are not so accustomed to parallel programming or languages for paral-
lel programming. The author’s short experience with programming in Concurrent
Prolog has shown that parallel programming is not so easy even for those experi-
enced with sequential programming. It is hard to expect what is implied by the
interaction of complex language rules.

(4) ARCHITECTURE INDEPENDENCE AND EFFICIENCY. Our language does not
commit itself to any of existing computer architectures. We leave undefined
any control mechanism relevant only to efficiency. Nevertheless, our language
must allow efficient implementation on a computer of the current technology.
We have a lot of simple, typical problems to be described in the language as
well as complex ones. It is very important that such programs run as efficiently
as the comparable ones written in existing parallel programming languages.

Efficiency for simple programs is an important property for a general program-
ming language. However, the requirement of simplicity and generality may possibly
interfere with the efficiency: Many useful programs may share the important prag-
matics that could be implemented more efficiently under some linguistic support.
Therefore, it is meaningful to identify an interesting subclass of the language within
which such pragmatics is efficiently supported and to get a more specific but more
efficient language. One reservation is that such subsetting must be done only for
efficiency purposes—a program in the subset must also be a program in the fullset.
Subsetting is often said to be undesirable. However, if we anyhow need both an
expressive language and a (very) efficient language, the better choice should be to
design an expressive language first and to appropriately restrict it to get an efficient
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language. It would be very difficult to design an efficient one first and extend it
naturally.

Moreover, our language specification should satisfy the following general prin-

ciples.

(5)

(6)

IMPLEMENTABILITY. There should be no language features that are not imple-
mentable or are very hard to implement. If such rules were to exist, the blame
should be laid on the language specification.

COMPELLING FORCE OF LANGUAGE RULES. There should be as few rules as
possible whose violation cannot be easily detected at compile time or at run
time. These would promote erroneous programs to circulate.

The following are more specific guidelines.

As we stated in the beginning of this section, we base our language on Horn-
clause logic and the resolution principle and try to utilize the previous results
on logic programming and parallel logic programming. Moreover, we try to
preserve the properties of the original framework of logic programming as much
as permitted by the other guidelines.

For example, ‘logical’ transformation of a program clause must preserve its

semantics to the maximal extent. Preserving the underlying formalism is desirable
also in the sense that it meets the requirement of simplicity.

(8)

We consider input and output as a boundary condition of language design.
More specifically,

(8a) we apply the basic idea of logic programming that a predicate defines a
relation between data to the whole program as well as internal procedures,
and

(8b) we use the same mechanism for interprocess communication and for
human-computer communication.

These points were discussed in Sections 2.3.3 and 3.3.2. Item (8a) claims that input
and output must be performed by means of streams. Item (8b) claims that all
communication data must be determinate.

Finally, we note that we are proposing basic concepts rather than a complete

programming language for practical use; our language has a tinge of a computational
model in this sense. Nevertheless, we believe that our proposal will provide a basis
for a programming language for describing large software. Issues of user-oriented
language features will be discussed in Section 8.3.2.

4.3.

Syntax
A GHC program is a set of guarded Horn clauses of the following form:
H :- Gl,---,GmlBl,---,Bn- (m>0,n>0)
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where H, G;’s, and B;’s are atomic formulas as defined in Section 2.1. H is called
a clause head, G;’s are called guard goals, and B;’s are called body goals. The con-

nectives ‘: =" and ‘,” are common to ordinary Horn clauses. The only difference from
Horn clauses is that one of the conjunctive operators is replaced by a commitment
operator ‘|’. The part of a clause before ‘|’ is called a guard, and the part after ‘|’

is called a body. Note that a clause head is included in a guard. Declaratively, the
commitment operator denotes conjunction, and the above guarded Horn clause is

read as “H is implied by G4,...,G,, and By,...,B,”.
To start a GHC program, we use a goal clause of the following form
:- By, ..., B,. (n > 0)
as to which there are no changes from the original framework.

The nullary predicate ‘true’ is used for denoting an empty set of guard or body
goals explicitly in a program. This is used only for notational convenience and need
not be considered as primitive. Actually it could be defined as follows:

true :- 1=1 | 1=1.

(=)

One binary predicate, ‘=’, is predefined by the language. The predicate ‘=’ is
used for unifying two terms. This predicate should be considered as predefined,
since it cannot be defined in the language for a syntactical reason.

4.4. Semantics

The semantics of GHC is quite simple. Roughly speaking, to execute a program
is to refute (Section 2.1.3) a given goal clause by means of parallel input resolution
(Section 3.2.2) using the clauses in the program. Of course, some adaptations must
be made according to the syntactical changes. Firstly, a proof tree constructed by
parallel input resolution must have an arc corresponding to each guard goal, as well
as each body goal, of the clause represented by the parent node. Moreover, we
must define the treatment of the predefined predicate ‘=": It is treated as if it were
defined by the following ordinary Horn clause:

X = X.

Then, we give the semantics of the guard by restricting the above parallel input
resolution.

As the simplest way to meet Requirement (8) of Section 4.2, we treat the
construction of all proof trees in a single environment rather than independently.
That is, we disallow unification in two proof trees to instantiate the same variable to
different values. Any substitution applied to a variable must be common or global
throughout the execution of the program.

To achieve the above goal while letting the language be still useful, we impose
the following rules of suspension:
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e Rules of Suspension

(a) Unification invoked directly or indirectly in the guard of a clause C called
by a goal G (i.e., unification of G and the head of C' and any unification
invoked by executing guard goals of C') cannot instantiate (see Section
2.1.2) the goal G.

(b) Unification invoked directly or indirectly in the body of a clause C' cannot
instantiate the guard of C until that clause is selected for commitment
(see below).

A piece of unification that can succeed only by making such bindings is sus-
pended until it can succeed without making such bindings (end of the rules of
suspension).

Another rule we must have is the rule of commitment. When some clause C'
called by a goal G succeeds in solving (see below) its guard, the clause C' tries to
be selected for subsequent execution (i.e., proof) of G. To be selected, C' must first
confirm that no other clauses in the program have been selected for G. If confirmed,
C'is selected indivisibly, and the execution of GG is said to be committed to the clause

C.

We say that a set of goals succeeds (or is solved) if the proof procedure succeeds
in constructing for them a non-ordered refutation whose non-root nodes all represent
selected or ordinary clauses. We do not say that it is solved even if the proof
procedure constructs a non-ordered refutation with a non-root node representing a
non-selected clause: We are interested in a proof in which only selected clauses are
involved. We do not have the notion of failure, though we could introduce it. This
point will be discussed in Section 4.10.

It must be stressed that under the rules stated above, anything can be done in
parallel: Conjunctive goals can be solved in parallel; candidate clauses called by a
goal can compete in parallel for commitment; unification of a goal and the head of
a candidate clause can be done in parallel, both internally and with the execution
of guard goals.

However, it must be even more stressed that we can also execute a set of
operations in a predetermined order as long as it does not change the meaning of
the program. The only possible difference between sequential and parallel execution
is that sequential execution may fail to solve a set of goals which can be solved by
parallel execution. Therefore, the serialization is allowed only if there is no such
possibility.

Note that in spite of the above notes on parallelism, instantiation of a variable
must of course be done as an indivisible operation, because otherwise the properties
of unification would no longer hold. The selection of a clause upon commitment
must also be done as a indivisible operation.
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The rules of suspension could be restated as follows:

(a) The guard of a clause cannot export any bindings to (or, make any bindings
which is observable from) the caller of that clause, and

(b) the body of a clause cannot export any bindings to (or, make any bindings
which is observable from) the guard of that clause before that clause is selected
for commitment.

Rule (a) is used for synchronization, so it could be called the rule of synchronization.
Rule (b) is rather tricky; it states that we can execute the body of a non-selected
clause, whose result may prove to be useless afterwards. However, the above re-
strictions guarantee that this look-ahead computation never affects the selection
of candidate clauses nor the other goals running in parallel with the caller of the
clause. So Rule (b) is effectively the rule of sequencing between the guard and the
body of a clause.

Let us compare the above rules of GHC with those of Concurrent Prolog dis-
cussed in Section 3.4. In Concurrent Prolog, unification which is performed in a
guard (including a head) and which would export bindings pretends to succeed by
recording the resultant bindings locally. In GHC, such unification simply suspends.
Suspension of unification may, but does not always, be released when the variable
that caused suspension is bound to some variable or some non-variable term by the
unification invoked in the body of some selected clause.

An example may be helpful in understanding the rules of suspension. Let us
consider the following program:

Goal clause: = p(X), qX). (4.4-1)
Program clauses: p(ok) :- true | ... . (4.4-2)
q(Z) :- true | Z=ok. (4.4-3)

Two goals in Clause (4.4-1) can be executed in parallel, but we assume that
p(X) is executed first. Then the unification is attempted between the goal p(X)
and the head p(ok) of Clause (4.4-2), but this unification cannot instantiate X to
the constant ‘ok’, since it is invoked in the guard: Clause (4.4-2) must wait until
X is instantiated to ‘ok’ by the goal q(X). On the other hand, the goal q(X) can
be unified with the head q(Z) of Clause (4.4-3) without instantiating X. So Clause
(4.4-3) can be selected and the goal ‘Z=ok’ instantiates Z and hence X to ‘ok’. Then
the head unification of Clause (4.4-2) succeeds and Clause (4.4-2) is selected.

In short, Clause (4.4-2) can be selected only after the goal ‘Z=ok’ is executed
no matter which of the two goals in Clause (4.4-1) starts first. The goal q(X) acts
as the producer of the value of X and the goal p(X) acts as the consumer. Thus we
have introduced causality into logic programming.

The semantics of the following program should be more carefully understood:
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Goal clause: = p(X), q(X). (4.4-4)
Program clauses: p(Y) :- q(Y) | ... . (4.4-5)
q(Z) :- true | Z=ok. (4.4-6)

To solve the guard of Clause (4.4-5), we have to do two things in parallel: unifying
p(X) and p(Y) (i.e., parameter passing), and solving q(Y). Let us first assume that
parameter passing is executed first. Then the goal ‘Z=ok’ tries to instantiate Z, Y
and X, which are now identical, to ‘ok’. However, it must suspend because it is
indirectly invoked in the guard of Clause (4.4-5). Let us then consider the other
case where the goal q(Y) is executed prior to parameter passing. The variable Y is
successfully bound to ‘ok’ because this does not export binding to the goal p(X).
However, this binding makes the subsequent parameter passing suspend because it
would bind X to ‘ok’. Hence, no matter which case actually happens, Clause (4.4-5)
behaves equivalently to Clause (4.4-2) as for the binding given to the variable X.

4.5. Important Properties
In this section, we list the important consequences of the above semantics.

CONSEQUENCE 1. Any unification intended to ‘export’ bindings to the caller of a
clause through its head arguments must be specified in the body of the clause. Such
(=

unification must be specified by using the predefined predicate ‘=’. The program-
ming style of GHC differs from that of Prolog in this point.

CONSEQUENCE 2. Unification between a clause head and its caller may, but need
not, be executed in parallel. It can be executed sequentially in any predetermined
order.

This would require justification. It suffices to show that when the unification of
a clause head H and its caller G suspends trying to make a binding to a variable
X in sequential execution, it does not succeed in parallel execution at least until
X is instantiated to some term. We consider a frozen counterpart of G. A frozen
counterpart G’ of an expression G with respect to a variable X is an expression
obtained by instantiating X to a fresh constant. Then, sequential unification (with-
out dataflow restriction) between G’ and H fails obviously. However, since success
or failure of ordinary unification should not depend on the specific algorithm em-
ployed, any correct parallel unification algorithm must fail to unify G’ and H. Any
parallel unification with dataflow restriction between G and H has an obvious coun-
terpart in ordinary parallel unification between G’ and H, and the former detects
suspension or failure where the latter detects failure. This means that the former
never succeeds at least while X is left as it is.

CONSEQUENCE 3. Unlification between the head of a clause C and its caller and
the execution of the guard goals of C can be executed in parallel. That is, the
execution of the guard goals can start before the head unification has completed.
However, the usual way of execution that solves the guard goals only after the head
unification is also allowed.

— 64 —



The first half is obvious from the definition of parallel input resolution. The second
half can be shown in the same manner as Consequence 2 as outlined below. A proof
tree to solve each guard goal defines a set of equations which must be solved in
conjunction with head unification without instantiating the caller. Therefore, the
only difference from the proof of Consequence 2 is that a set of equations to be
solved is expanded by the guard goals. We can consider a frozen counterpart of the
caller of the clause as before, and can justify sequentiality between the head and
the guard goals.

CONSEQUENCE 4. The execution of the body of a clause may, but need not, start
before that clause is selected for commitment.

This was explained in Section 4.4.

CONSEQUENCE 5. We need not implement a multiple environment mechanism, a
mechanism for binding a variable with more than one value.

This mechanism is in general necessary when more than one candidate clause for a
goal is tried in parallel. GHC, however, avoids it by allowing at most one clause,
a selected clause, to export bindings for each caller. This restriction is one of the
reasons why the operational semantics of GHC is incomplete as a theorem prover,
as will be discussed in Section 4.9.

Unfortunately, Consequences (2) and (3) do not hold if we introduce the concept
of failure; see Section 4.10.

4.6. Program Examples
This section illustrates some example programs. Besides this section, Chapter

7 shows how to program—possibly automatically—search problems in GHC.

4.6.1. Binary Merge

merge([A|Xs],Ys, Zs) :- true | Zs=[A|Zs1], merge(Xs,Ys,Zsl).
merge (Xs, [AlYs],Zs) :- true | Zs=[AlZs1], merge(Xs,Ys,Zsl).
merge ([], Ys, Zs) :— true | Zs=Ys.
merge (Xs, 1, Zs) :— true | Zs=Xs.

The goal ‘merge (Xs,Ys,Zs)’ merges two streams Xs and Ys (implemented as
lists) into one stream Zs. This is typical of nondeterministic programs: When both
Xs and Ys have been instantiated, the element of either stream may appear first in
Zs. The language rules of GHC do not state that the selection of clauses must be
fair. That is, an implementation may always choose the first clause when both the
first and the second clauses are selectable. In a good implementation, however, the
elements of Xs and Ys is expected to appear in Zs almost in the order of arrival.
The above treatment of the fairness problem is the same as in CSP (Hoare [1978]).
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Note that the declarative reading of the above program gives the usual, logical
specification of the nondeterministic merge—arbitrary interleaving of the two input
streams makes the output stream. A difference between the GHC program and the
logical specification is that a GHC program expresses the direction of computation
or causality while the logical specification does not. Another difference is that the
execution mechanism of GHC chooses as the value of Zs arbitrary one of the possible
interleavings of Xs and Ys and does not compute the others.

4.6.2. Generating Primes

primes(Max,Ps) :- true | gen(2,Max,Ns), sift(Ns,Ps).

gen(N,Max,Ns) :- N=<Max | Ns=[N|Ns1], N1:=N+1, gen(N1,Max,Nsi).
gen(N,Max,Ns) :- N> Max | Ns=[].

sift([P|Xs],Zs) :- true | Zs=[P|Zs1], filter(P,Xs,Ys), sift(¥s,Zsl).
sift([], Zs) :- true | Zs=[].

filter(P, [X|Xs],Ys) :- X mod P=:=0 | filter(P,Xs,Ys).
filter(P,[X|Xs],Ys) :- X mod P=\=0 | Ys=[X]|Ys1], filter(P,Xs,Ysl).
filter(P,[], Ys) :- true | Ys=[].

The goal ‘primes(Max,Ps)’ returns through Ps a stream of primes up to
Max. The stream of primes is generated from the stream of integers generated
by ‘gen(2,Max,Ns)’ by filtering out multiples of primes. For this purpose, a goal
‘filter(P,Xs,Ys)’ is generated for each prime P, which filters out multiples of P
from the stream Xs and yields Ys. Since all integers in Xs are guaranteed to be
non-multiples of any prime less than P, the first element of Ys is a prime succeeding
P. When it is obtained, a new filter goal is created and cascaded.

Note that the above program is simple-minded. For example, the goal ‘fil-
ter(101,Xs,Ys)’ need not filter out anything until it finds in the input stream Xs
an integer greater than 10201 (= 101?).

The binary predicate ‘:=" evaluates its right-hand side operand as an integer

expression and unifies the result with the left-hand side operand. The binary pred-
icate ‘=:=" evaluates its two operands as integer expressions and succeeds iff the
results are the same. These predicates cannot be replaced by the predicate ‘=" be-
cause ‘=’ never evaluates its arguments. The predicates ‘=\=", ‘=<’, ‘>="/ ‘<’ and ‘>’

are also used for comparison, whose meanings should be obvious.

Although these predicates will be provided as system predicates, we need not
think of them as illogical or something not definable in the language. For example,
we could enumerate all the clauses expressing possible input-output relations of ‘:=’
which include the following:
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X:=0 :- true | X=0 X:=0+0 :- true | X=0.
X:=1 :- true | X=1 X:=0+1 :- true | X=1.
X:=-1 :- true | X=-1. ..

Also, the predicate ‘=\=" could be defined as
X=\=Y :- true | A:=X, B:=Y, A<>B.

where the predicate ‘<>’ could be defined by enumerating all clauses of the form
a <> 3 :- true | true.

where a and 3 denote non-identical integers.

4.6.3. Generating Primes by Demand-Driven Computation
primes(Ps) :- true | gen(1,Ns), sift(Ns,Ps).

gen(M, [N|Ns1]) :- true | M1:=M+1, N=M1, gen(M1,Ns1l).
gen(M, [] ) :- true | true.

sift(Xs,[Z|Zs1]) :- true |
Xs=[Z|Xs1], filter(Z,Xs1,Ys), sift(¥s,Zsl).

sift(Xs, [] ) :- true | Xs=[].

filter(P,Xs,[Y|Y¥s1]) :- true | Xs=[X|Xs1l], filter2(P,X,Xs1,Y,Ysl).
filter(P,Xs, [] ) :- true | Xs=[].

filter2(P,X,Xs1,Y,Y¥s1) :- X mod P=:=0 | filter(P,Xs1,[Y|Ys1]).

filter2(P,X,Xs1,Y,Y¥s1) :- X mod P=\=0 | Y=X, filter(P,Xs1,Ysi1 ).

ask(IO0s,Ps) :- true | IOs=[read(M)|I0s1], ask2(I0s1,Ps,M).
ask2(I0s1,Ps,M) :- M > 0 | Ps=[P|Ps1], ask3(I0s1,Psi,M,P).
ask2(I0s1,Ps,M) :- M=:=0 | ask(IOs1,Ps).
ask2(I0s1,Ps,M) :- M < 0 | I0Osi=[], Ps=[].
ask3(I0s1,Ps1,M,P) :- wait(P) |

I0s1=[write(P),nl1|I0s2], M1:=M-1, ask2(I0s2,Psi,M1).

test :- true | instream(IOs), ask(IOs,Ps), primes(Ps).

This program illustrates the general statement that demand-driven computa-
tion can be implemented by means of data-driven computation. It is the demand-
driven version of the prime generator program in Section 4.6.2 with a user interface.
The program in Section 4.6.2 is data-driven and there is no means to control the
generation of Ps once ‘prime(Max,Ps)’ is called. Moreover, it requires the upper
bound of primes to be generated prior to execution. On the other hand, the predi-
cate ‘primes’ in the demand-driven version generates primes on demand.

Let us examine the program. When the goal ‘primes(Ps)’ is executed, Ps is
passed to the second argument of the goal ‘sift(Ns,Ps)’. However, the predicate

— 67 —



‘sift’ examines the second argument Ps in its guard, so the head unification sus-
pends until Ps is instantiated by the goal ‘ask(I0s,Ps)’. The goal ‘gen(1,Ns)’ also
suspends for the second argument Ns.

Assume here that Ps is instantiated to the form ‘[_|_]1’. Then the first clause
of ‘sift’ is selected for the goal ‘sift (Ns,Ps)’ and instantiates Xs and hence Ns.
Then the first clause of ‘gen’ is selected for the goal ‘gen(1,Ns)’ and it instantiates
N to 2, which also becomes the value of the first element of Ps.

Seen from outside, the goal ‘prime(Ps)’ fills the undetermined element of a
given list structure with a new prime, but it does not create the skeleton of the list
structure by itself. Thus instantiation of (the sublist of) Ps to the form [_|_] is
regarded as a demand to the goal ‘prime(Ps)’.

The above program provides a user interface goal ‘ask(I0s,Ps)’ to run the
prime generator explained above. The goal ‘ask(I0s,Ps)’ reads an integer M from
the terminal, sends M demands to the ‘prime(Ps)’ goal displaying each obtained
prime before sending the next demand, again reads a new integer, and so on. Here
we have used the declarative input/output predicate ‘instream’ provided by the
compiler described in Section 6.2. The predicate ‘instream’ takes a stream of
input/output commands as its argument, of which we used ‘read(N)’ for reading
an integer, ‘write(N)’ for displaying an integer, and ‘nl’ for beginning a new line.
These commands are processed in the order in which they appear in the stream, so
we have precise control over input and output.

When the goal ‘ask(I0s,Ps)’ reads a negative integer, it closes its argument
streams I0s and Ps and terminates itself.

An important notice follows: Although this program has full control over the
generation of primes, it is never a good program from a viewpoint of efficiency since
it has lost most of the parallelism inherent in the data-driven version. For efficiency,
we must allow possibly useless computation to some extent. One way to do this
will be to use the bounded buffer technique described in Section 4.6.4. Another
way will be to give up fully demand-driven computation and to incorporate into
the data-driven program a mechanism for controlling the generator of the integer
stream.

4.6.4. Bounded Buffer Stream Communication
test(N) :- true | buffer(N,Hs,Ts), ints(0,100,Hs), consume(Hs,Ts).

buffer(N,Hs,Ts) :- N > 0 | Hs=[_|Hs1], N1:=N-1, buffer(N1,Hs1,Ts).
buffer(N,Hs,Ts) :- N=:=0 | Ts=Hs.

ints(M,Max, [H|Hs]) :- M< Max | H=M, M1:=M+1, ints(M1,Max,Hs).
ints(M,Max,[H|_ 1) :- M>=Max | H=eos.

consume ([H|Hs],Ts) :- H\=eos | Ts=[_|Ts1], consume(Hs,Tsl).
consume ([H|Hs],Ts) :- H =eos | Ts=[].
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This program shows that we can program a bounded buffer in GHC, an idea first
shown by Takeuchi and Furukawa [1983] [1985] in a logic programming framework.
The goal ‘ints(0,100,Hs)’ is a demand-driven generator of a stream Hs of integers.
The demands are generated by the goal ‘consume (Hs,Ts)’, which tries to keep N
unanswered requests issued. For this purpose, we use the notion of a difference list.
The goal ‘buffer (N,Hs,Ts)’ initially generates a difference list of length N whose
head and tail are Hs and Ts, respectively. The goal consume (Hs,Ts) receives both
its head and tail, and instantiates the current tail, i.e., the uninstantiated part of
the stream, whenever a new element in Hs is obtained and examined in the guard
of consume.

- (=)

The binary predicate ‘\=" is the negation of the predicate ‘=’. It succeeds
when its two arguments turn out to be ununifiable; it suspends until then. This
predicate, again, need not be thought of as predefined. To check whether some term
is ununifiable with the constant ‘eos’, we can prepare the following clause

X\=eos :- true | true.

for every most general term X whose principal function symbol is distinct from

‘eos’.

4.6.5. Meta-Interpreter of GHC

call(true )

true | true.

call((A,B)) true | call(A), call(B).

call(A=B ) true | A = B.

call(Aa ) = A\=true, A\=(_,_ ), A\=(_=_) |
clauses(A,Clauses), resolve(A,Clauses,Body), call(Body).

resolve(A, [C|Cs],B) :- melt_new(C,(A:-G|B2)), call(G) | B=B2.
resolve(A,[C|Cs],B) :- resolve(A,Cs,B2) | B=B2.

This program is basically a GHC version of the Concurrent Prolog meta-
interpreter by Shapiro [1984]. The predicate ‘clauses’ is a system predicate which
returns in a frozen form (Nakashima, Ueda and Tomura [1984]) a list of all clauses
whose heads are potentially unifiable with the given goal; it can omit those program
clauses which have turned to be unselectable forever, though a simple implementa-
tion may return all program clauses. Each frozen clause is a ground term in which
original variables are indicated by fresh constant symbols called a frozen variable
and in which two connectives ‘:-" and ‘,’ are represented by corresponding function
symbols; it is melted in the guard of the first clause of ‘resolve’ by ‘melt_new’.
The goal ‘melt_new(C, (A:-G|B2))’ creates a new term (say 7') from the frozen
term C by giving a new variable for each frozen variable in C, and tries to unify T
with ‘(A:-G|B2)°.

The predicate ‘resolve’ tests the candidate clauses and returns the body of
arbitrary one of the clauses whose guards have been successfully solved. This many-
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to-one arbitration is realized by the nest of binary clause selection performed in the
predicate ‘resolve’.

It is essential that each candidate clause is melted after it has been brought into
the guard of the first clause of ‘resolve’. If it were melted before passed into the
guard, all variables in it would be protected against instantiation from the guard.

One minor problem with the above meta-interpreter is that the above meta-
interpreter does not allow the body of a candidate clause to be executed before that
clause is selected, contrary to the semantics in Section 4.4 (Levy [1985]). Ounly the
body of the selected clause is ‘call’ed in the body of the fourth clause of ‘call’. The
discrepancy will be due to the syntactically restrictive way in which we provided

the function of commitment. Of course, practically, there should be no problem at
all.

4.7. Primitive Operations of GHC

This section makes some remarks on the primitive operations of GHC.

4.7.1. Resolution

GHC uses parallel input resolution (Section 3.2.2) as its basic computational
mechanism. Resolution in the usual sense (Robinson [1965]) contains selection of a
program clause, head unification and goal rewriting, but parallel input resolution
reveals that they need not form an indivisible operation. Head unification can be
executed in parallel with the newly created goals.

4.7.2. Unification and Anti-Substitutability

GHC allows all equations appearing in computation to be executed in parallel,
though an actual implementation may exploit sequentiality. We will examine what
must be considered as primitive operations in unification.

Given a set of equations S, we consider a new set of equations S’ U{X = T}
where S’ is obtained by replacing some occurrence of a term T by a fresh variable X .
The reverse operation of this, which may appear in any unification algorithm, may
be called substitution; therefore we will call our transformation anti-substitution.
Clearly, anti-substitution does not change the solution of S (i.e., the most general
substitution of all the substitutions which simultaneously solves the equations in S)
except that the solution of S’ U{X = T} binds X to T.

We define anti-substitution of a guarded Horn clause in a similar way. Given a
program clause, anti-substitution makes a new clause by replacing an occurrence of
some term 7T in the guard/body by a fresh variable X and adding the goal X=T in
that guard/body, respectively. This transformation does not change the result of a
program; that is, it does not change the answer substitution or causality of bindings.

— 70 —



It suffices to show that the anti-substitution does not affect the restriction to the
parallel input resolution imposed by GHC, since obviously it does not affect the
result of the original parallel input resolution except for the binding to X. Anti-
substitution can be divided into two cases: One is the case where a term in a clause
head is replaced, and the other is the case where a term in a guard goal or a body
goal is replaced. Firstly, we assume that the head H of a clause C' is rewritten to H’
and the goal X=T is added in the guard, yielding a new clause C’. For the clause
C to be selected for the caller G, we must solve G=H in conjunction with the guard
goals without instantiating G. For the clause C’ to be selected for the caller G, we
must solve G=H’' and X=T in conjunction with the original guard goals without
instantiating G. By considering a frozen counterpart of G' (see Section 4.5) for the
case of suspension, it is understood that the clause C' is selectable if and only if the
clause C' is selectable.

Secondly, we assume that some goal G is rewritten to the conjunction of goals
“G', X =T”. Then the only difference between G and G’, if any, is that the latter
explicitly states that the bindings necessary to select some clause for G) may be
postponed; G’ eventually becomes G and during this transition candidate clauses
for G’ never instantiates G’ for the rules of suspension. Therefore, this rewriting
does not affect the selection of a clause.

We note that anti-substitutability holds for a goal clause as well as program
clauses. This property well meets Requirement (7) of Section 4.2. It can be consid-
ered as a kind of referential transparency in a logic programming framework, as we
discussed in Section 3.4.4.

Anti-substitutability is helpful for considering the primitive operations of unifi-
cation in GHC. It seems natural to admit anti-substitutability operationally as well
as declaratively, since the computational mechanism should be left to implementa-
tion as long as it brings the correct result. If we admit it, the following consequences
follow:

1) The goal X=f(a) is equivalent to X=f(Y),Y=a. Therefore, X might not be
g q ) g
instantiated to a ground term instantaneously.

(2) A conjunction of communicating goals ‘p(X),q(X)’ is equivalent to the con-
junction ‘p(X),X=Y,q(Y)’. Therefore, the occurrences of X in the original con-
junction may not have the same value at the same time (of any observer). In
other words, communication by a shared variable may have a potential delay.

Item (1) is pointed out also by Hagiya [1983].

These consequences suggest freedom in implementation. Of course, the actual
set of primitive operations is determined by the unification algorithm employed.
These consequences also provide a good reason why extralogical predicates such as
‘var’ and ‘==’ of Prolog do not make any sense in GHC.
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Under anti-substitutability, the metacall facilities proposed by Clark and
Gregory [1984b] have a semantical problem.  Their two-argument metacall
‘call(Goal, Result)’ tries to solve Goal possibly generating output bindings, and
it unifies Result with ‘succeeded’ upon success and with ‘failed’ upon failure.
We have not introduced the notion of failure, but there is no problem in introducing
it for unification goals.

Consider the following example (Sato and Sakurai [1984]):
:— call(X=0, _), X=1.

If the first goal is executed first, X becomes 0. Then the unification X=1 fails and
so does the whole clause. If the second goal is executed first, X becomes 1. But
since the first goal never fails, the whole clause succeeds. This is a new kind of
nondeterminism resulting from the order of unification; without this feature, all
nondeterminism would result from the arbitrary choice of selectable clauses.

Let us consider another example:
:— call(X=0, _), call(X=1, _).
Using anti-substitutability, we can rewrite the above goal clause to:
:— call(X=0, ), X =Y, call(y=1, _).

However, this rewriting shows that the failure of unification cannot be confined in
either ‘call’. The failure can creep out and topple the whole goal. This means that
the metacall facilities as proposed by Clark and Gregory cannot protect a system
program from unpredictable behavior of a user program.

4.7.3. Commitment

The body of a clause selected for commitment becomes free from the dataflow
restriction by the rules of suspension. However, the restriction need not be released
indivisibly with the selection of the clause. It may be released after commitment
and in parallel with the execution of the body goals.

4.8. Process Interpretation of GHC

Although GHC is considered as a simplification of previous parallel logic pro-
gramming languages, it also has close relationship to programming languages under
other categories. For example, it can be viewed as a generalization of nondetermin-
istic dataflow languages and Communicating Sequential Processes (Hoare [1978]).
This section shows that GHC provides a flexible framework for describing processes,
communication, and synchronization. Detailed comparisons with other program-
ming languages will be made in Chapter 5.
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A program clause of GHC can be viewed as a rewrite rule of the goal clause as
in Prolog. For example, let us consider the first clause of ‘merge’ shown in Section
4.6.1:

merge([AlXs],Ys,Zs) :- true | Zs=[A|Zs1l], merge(Xs,Ys,Zsl).

This clause claims that it can rewrite its caller by its two body goals if the caller
satisfies a certain condition, or more specifically, if the first argument of the caller
is instantiated to the form ‘[_[_]1’. Generally speaking, a goal, given sufficient
bindings from other conjunctive goals, reduces itself to a set of other goals, and by
doing so generates new bindings. Thus conjunctive goals can be viewed as processes
interacting with one another by means of the bindings to shared variables.

The process interpretation of GHC is given by the following correspondence:

A system of processes  «— Conjunctive goals

A process «—— A goal

Process state «—— The set of arguments of the goal
Computation «—— Goal rewriting and unification
Communication +—— Instantiation of a shared variable by

a unification goal in a body and
observation of the generated binding
by unification in a guard

Synchronization +— The rule of synchronization
Choice nondeterminism <+— The rule of commitment

The (possibly recursive)
definition of a process  «— A predicate

Note that when a process G is reduced to other processes, we need not think
of G as disappeared; the process G has only committed its remaining tasks to
those processes and it continues to exist conceptually until all its subprocesses have
terminated.

The process interpretation of logic was first presented by van Emden and de
Lucena [1982], and it was presented by Shapiro [1983a] in the context of a concrete
programming language. GHC allows a process interpretation most naturally, since
it has the clearest notion of causality among other logic programming languages.

GHC as a process description language has the unique feature of flexibility.
It allows dynamic generation and deletion of processes, including recursive process
generation. It allows dynamic creation of data structures. It allows demand-driven
computation as well as data-driven computation. Moreover, we can ‘declaratively’
handle mutable objects such as arrays and databases by implementing them as
processes and by using transaction streams as the interface (see Section 6.1).
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GHC uses shared variables for communication; however, this communication
scheme is quite different from the shared-variable communication in procedural lan-
guages. A procedural language requires complex mechanisms and protocols for syn-
chronization and communication because variables do not have a single-assignment
property. GHC variables, on the other hand, have a single-assignment property;
their values are determined possibly gradually as computation proceeds, but they
never change non-monotonically. Therefore, we can make necessary synchronization
based on how much information is known on the value of a variable. Synchronization
based on the availability of data is the basic idea of dataflow languages. However,
availability is treated as binary information in early dataflow languages, while GHC
provides a more general and uniform information structure, namely a term, which
naturally contains the notion of the availability of data.

Although GHC uses shared variables for communication, we can also use the
message-passing paradigm in writing a GHC program; GHC is expressive enough
to model message passing thanks to the single-assignment property of variables.
Thus, GHC and its ancestors could be viewed as proposing a new computation and
communicational model which is hard to be categorized into any of the existing
models. It is hoped that the simplicity of GHC will make it accepted as a parallel
computational model as well as a programming language.

4.9. Justification of the Language Design

GHC is designed by adapting Horn-clause logic and the resolution principle for
a parallel programming language. Although GHC can be given an interpretation of
its own apart from the original framework of logic programming as we showed in
Section 4.8, it should be meaningful to try to justify our adaptation:

(1) While logical formulae express no causality, computation obviously connotes
direction. Therefore, it is not unnatural for a programming language to have a
notion of direction or causality. Since the result of computation is constructed
by unification in logic programming, a natural way of introducing causality is
to introduce it among unification operations.

(2) Bindings to variables must be determinate for the reason shown in Section
4.2. Therefore, candidate clauses for a goal must not instantiate the goal while
there is more than one such candidate. It might be possible to employ a
more generous method than the rules of suspension to guarantee determinacy;
however, the author is quite doubtful whether the increase of the expressive
power makes up the loss of simplicity.

(3) In addition to the rules of suspension, we must have a rule for allowing at most
one clause to export bindings in order to construct the result of computation.
Thus we need a mechanism to select one clause reasonably. We employed the
rule of commitment which involves nondeterministic choice for this purpose.
Nondeterministic choice is necessary to interface with the outside world which
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we are obliged to treat as nondeterministic whether or not it is actually so
(Clinger [1981], p. 52). Even without interaction with the outside world, non-
determinism is necessary at the front end of a shared service process (e.g., a
manager of internal symbols) which serves its clients in the order of the arrival
of requests. Use of success and choice nondeterminism rather than success and
failure (as in Qute; see Section 5.3) is also closely related to the fact that the
semantics of GHC is defined without using any notion of failure. Computation
proceeds based only on positive information.

(4) Because of the adaptation, the operational semantics of GHC has lost complete-
ness as the theorem prover for Horn-clause logic, though of course it retains
soundness. The incompleteness has been introduced to satisfy the requirement
of determinate bindings, not for the reason of efficiency as Shapiro [1983a] and
Gregory [1985b] state. Note that although GHC is incomplete in general, it
must be complete with respect to a nontrivial class of programs and goals,
which is yet to be identified.

The semantics given to the guard construct is powerful enough to express syn-

chronization, conditional branching and choice nondeterminism, and contributes
very much to the simplicity of the language. The Relational Language (Clark and
Gregory [1981]) was the first to introduce the guard concept to logic programming
for the purpose similar to ours (IC-Prolog (Clark and McCabe [1980]) was the
first to introduce the guard concept to logic programming, but the purpose was
rather different). GHC has removed the restrictions on the guard of the Relational
Language together with mode declarations and annotations.
Note, however, that the notation ‘|’ we introduced for expressing guards is
rather arbitrary. We could employ any notation as long as it can distinguish between
restricted and unrestricted unification directly or indirectly invoked by a clause. For
example, we could specify first clause of ‘merge’ as

merge([A |/ Xs/, Ys, [A | Zs1]) :— merge(Xs, Ys, Zsl).

and the predefine predicate ‘=" as
X =X.

where the italicized part indicates unification to be performed before commitment.

Finally, we justify the lack of AND- and OR-sequentiality in GHC. We de-
liberately excluded AND-sequentiality, because our programming experience with
Concurrent Prolog has never called for this construct. One may think that AND-
sequentiality could be used for the specification of scheduling and for synchroniza-
tion. However, the primitives for scheduling should be introduced at a different
level from that of GHC, and AND-sequentiality as a synchronization primitive is of
no use in the computational model of GHC which allows anti-substitutability.
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4.10. Possible Extensions—Treatment of Failure

In this section, we consider the treatment of finite failure in GHC.

The semantics of GHC as described in Section 4.4 does not introduce the con-
cept of failure. Any meaningful result of computation is constructed only of suc-
cessful subcomputations, though no such result may exist. Moreover, GHC does
not commit itself to Closed World Assumption (Gallaire and Minker [1978]). We
assume that a program is open-ended: If there is no selectable clause for a given
goal, we regard it as not provided yet. This idea coincides with the idea of incom-
plete data structures, so it should be convenient when we handle programs as data.
This idea coincides also with the idea of regarding system predicates as defined by
possibly infinite program clauses, as we did in Sections 4.6.2 and 4.6.4. Note that
this idea is effectively used in the query-the-user facilities (Sergot [1983]).

Nonetheless, it may sometimes be convenient to assume a closed world for a
whole program or a specific predicate. Only by doing so we can introduce the
predicate ‘otherwise’ discussed in Section 3.4.7 or OR-sequentiality of PARLOG
(Clark and Gregory [1984a]), both of which are used for expressing default clauses.
The predicate ‘otherwise’ can appear only as a guard goal. A goal ‘otherwise’
succeeds when all the other program clauses turn out to be non-candidates (see

below).
Finite failure can be recursively defined as follows:
(1) The goal of the form S=T fails

e if the principal function symbols of S and T are different, or

e if S is of the form f(Sy,...,S,) and T is of the form f(T1,...,T,), where
f is some function symbol, and the goal S;=T; fails for some 2.

(2) The goal of the other form fails if all the clauses in the (closed) program turns
out to be non-candidates.

Here, a clause
H :-G, ...,G,|By, ..., B,.

is said to be a non-candidate for a goal G if some of G1,...,G,, or G=H fail.

Unfortunately, introduction of the notion of failure restricts the exploitation of
sequentiality mentioned in Section 4.5. Let us consider the following example due
to Gregory [1985a]:

Goal clause: :— and(X, false).
Program clause: and(true, true) :- true | true.

The head unification fails if the arguments are unified in (pseudo-) parallel, but
suspends forever if they are unified sequentially from left to right.
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An even more awkward example due to Chikayama and Miyazaki [unpublished]
is shown below:

Goal clause: :- p(A, false, true).
Program clause: p(X, X, X) :- true | true.

Let us assume that A and X have been unified. Then the head unification suspends
at the second argument because if X were bound to ‘false’, so would A. We go to
the third argument if we employ pseudo-parallelism. However, the unification of the
third argument suspends also for the same reason. This is an erroneous execution
scheme, because A, ‘false’ and ‘true’ cannot be unified no matter what A is bound
to. The ununifiability would be detected if the unification were done from right to

left.

To generalize, when a variable X and ununifiable two terms 77 and T, are
unified in a guard, failure must be detected whether X can be instantiated or not.
We need a mechanism capable of detecting the ununifiability of T} and Ty without
instantiating X.

4.11. Implementation of the Synchronization Mechanism

This section considers the implementation of the rules of suspension, or more
specifically, the rule of synchronization. Of course, there are many other implemen-
tation issues to be considered, particularly on parallel implementation. However,
parallel implementation would still have to be included in the future works because
of their difficulty recognized by many researchers. As regards sequential implemen-
tation, Section 6.2 describes an efficient compiler, but that compiler does not allow
calling user-defined predicates from a guard. So the purpose of this section is to
show some ideas on the implementation of full GHC.

We will first show an easy-to-understand but possibly inefficient method: point-
er coloring. When a term in a goal and a variable in the guard of a clause C' are
unified, we color the reference pointer which indicates the binding. We cannot
make a binding to a term dereferenced using one or more colored pointers. When
the clause C' is selected, colored pointers created in its guard are uncolored. For
this purpose, the guard of a clause must record all pointers colored for that guard.
Uncoloring can be done in parallel with the other operations in the body, as we
stated in Section 4.7.3.

Care must be taken when a term in a goal to be unified with a variable in a
guard is itself dereferenced using colored pointers. Consider the following example:

Goal clause: = p(£(a)). (4.11-1)
Program clauses: p(X) := q(X) | ... . (4.11-2)
q(Y) :- true | Y=£(Db). (4.11-3)

If Y should directly point to the term ‘f (A)’ by a colored pointer and uncolor it upon
selection of Clause (4.11-3), A would be erroneously instantiated to the constant
‘p’. There are a couple of possible remedies:
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(1) To disallow pointers which go directly out of nested guards and to use instead
a chain of pointers.

(2) To let each pointer know how many guards it goes up through.

(3) (Miyazaki [1985a]) Pointers may go directly through nested guards. However,
we let each colored pointer know for what guard it is colored. When directly
pointing to a term obtained by dereferencing colored pointers, the new pointer
must be recorded in the guard which records the last colored pointer in the
dereferencing chain.

In many cases, however, we can statically analyze suspension and need not use
colored pointers. The simplest case is the following clause:

p(true) :- ... |

The clause head claims that the argument of the caller must have been instantiated
to ‘true’ to select this clause. We can statically generate the code for this check,
and need not use colored pointers.

In general, if a guard calls only system predicates for simple checking such
as integer comparison, compile-time analysis is easy because no consideration is
needed on other clauses. On the other hand, if it calls a user-defined predicate,
global analysis is necessary to determine which unification may suspend and which
unification cannot. There will be no general method for static analysis, but in many
useful cases, static analysis like PARLOG’s compile-time mode analysis (Clark and
Gregory [1984c]) will be effective.

4.12. Summary and Future Works

We have proposed a parallel logic programming language Guarded Horn
Clauses. Its design principles, syntax, semantics, important properties, program-
ming examples, primitive operations, interpretation as a process description lan-
guage, justification of the design, possible extensions, and implementation of the
rule of synchronization have been described.

We will review the language design along the general design principles in Section
4.2. Firstly, we tried to rule out sequentiality from the semantics as much as pos-
sible. Even the rule of sequencing is described as part of the rules of suspension,
which contributes to the uniformity. However, at the same time, we tried to retain
the possibilities of exploiting sequentiality in an actual implementation. This is im-
portant for efficient implementation on a sequential computer or on communicating
sequential computers. Secondly, we demonstrated in Section 4.6 that GHC is ex-
pressive enough to describe data-driven and demand-driven computation, bounded-
buffer communication, and a meta-interpreter of GHC itself. In addition, we showed
that GHC can be viewed as a general and powerful process description language in
Section 4.8. Thirdly, we tried to keep the language as simple as possible by relating
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all the semantical essences to the guard construct. We defined the semantics in
terms of the original logic programming framework to keep the language indepen-
dent of specific architectures and implementations and to avoid inessential details
to creep in.

It cannot be immediately concluded that GHC can be efficiently implemented
on parallel computers. The efficiency of GHC owes very much to the future research
on the language itself and its implementation. However, we can say that GHC is
more favorable than Concurrent Prolog for implementation, as will be discussed
in Chapter 5. For applications in which efficiency is the primary issue but little
flexibility is needed, we could design a restricted version of GHC which allows only
a subclass of GHC and/or introduces declarations which help optimization. As
stated in Section 4.2, such a variant should have the properties that additional
constructs are used only for efficiency purposes and that a program in that variant
is readable as a GHC program once the additional constructs are removed from the
source program.

There are many future works on the language itself as well as its implementa-
tion, many of which are related to control issues and system programming. Those
include notations for helping an implementation perform efficiently in time and
space, facilities for writing programming systems such as tracers and debuggers,
notations for exception handling, better treatment of the fairness of nondetermin-
istic choice and choice with priority. These issues will be discussed in more detail
in Section 8.3.3.
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Chapter 5

COMPARISON OF GHC WITH
OTHER PROGRAMMING LANGUAGES AND MODELS

In this chapter, we compare Guarded Horn Clauses with other programming
languages and computational models.

5.1. Concurrent Prolog

GHC was designed in an effort to refine Concurrent Prolog keeping its pro-
gramming paradigm as much as possible. As a result, these languages have many
features in common from the viewpoint of programming—process interpretation,
communication by streams, and committed-choice nondeterminism. If one turns
his eyes to semantical details, however, he or she will find that GHC is simpler than
Concurrent Prolog.

Firstly, unlike Concurrent Prolog, GHC has no read-only annotations. In GHC,
the semantics of guards enables process synchronization. Thus the synchroniza-
tion mechanism has become more static and easier to analyze at compile time.
Nevertheless, we can use incomplete messages and specify demand-driven compu-
tation. The only technique abandoned is the ‘protected data’ technique explained
in Section 3.4.3. GHC has excluded it because protected data make sense only
if the language assumes sequentiality in the transmission of terms (see Section
3.4.4). However, GHC does not have such sequentiality because it has adopted
anti-substitutability (Section 4.7.2), which states that a complex term may not be
treated as an atomic entity when some variable is instantiated to it.

Secondly, Concurrent Prolog needs a multiple environment mechanism while
GHC does not. In Concurrent Prolog, bindings generated in each guard are recorded
locally until commitment and are exported into the global environment upon com-
mitment (Miyazaki, Takeuchi and Chikayama, 1985). However, the language rules
on this mechanism proved to contain semantical problems whose solution would
require an additional set of language rules, as discussed in Section 3.4.3. More
importantly, we have not had any evidence that we need multiple environments
in stream-AND-parallel programming. The multiple environment mechanism of
Concurrent Prolog may seem helpful in detecting the failure of output unification
prior to commitment. However, this checking does not seem so important since we
always write programs so that output unification succeeds. Moreover, this checking
is incomplete unless we adopt the harder alternative on the semantics of commit-
ment described in Section 3.4.3.1.

The third difference is that GHC enjoys anti-substitutability as mentioned
above, while Concurrent Prolog does not because of its synchronization mecha-
nism. Thus a complex term is not treated as atomic in GHC, and communication
by a shared variable may have potential delay (see Section 4.7.2).
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5.2. PARLOG

GHC has many similarities to PARLOG as well as to Concurrent Prolog from
the viewpoint of programming. However, unlike PARLOG, GHC requires no mode
declaration for each predicate. Mode declaration of PARLOG is nothing but a guide
for translating a PARLOG program into Kernel PARLOG (Clark and Gregory,
1984c). It is a kind of macro and we can do without modes. In fact, GHC is more
similar to Kernel PARLOG than to PARLOG. However, unlike Kernel PARLOG, we
have only one kind of unification. Although each unification operation appearing
in a GHC program might be compiled into one of several specialized unification
procedures, GHC itself needs—and has—only one.

Another difference from (Kernel) PARLOG is that a (Kernel) PARLOG pro-
gram requires compile-time analysis in order to guarantee that it is legal, i.e., it
contains no unsafe guard which may bind variables in the caller of the guard (Clark
and Gregory, 1984c). Although Gregory (1985b) states that the safety check of
guard could be done at run time, it should not be the intended use of PARLOG.
On the other hand, a GHC program is legal if and only if it is syntactically legal;
it can be executed without any semantic analysis. This is the main source of se-
mantical simplicity of GHC compared with PARLOG. However, we must note that
a GHC program can be executed more efficiently with compile-time analysis. It is
true that some GHC programs require nontrivial run-time analysis of whether or
not each piece of unification generates a disallowed binding, but we expect that such
programs are seldom written. It is expected that the class of GHC programs whose
PARLOG counterparts have no unsafe guard accepts compile-time analysis. For ex-
ample, the GHC-to-Prolog compiler described in Section 6.2 disallows user-defined
goals in guards, but it generates the code for suspension checking as a sequence of
Prolog goals.

From a semantical point of view, GHC is much nearer to PARLOG than to
Concurrent Prolog. As a result, many of the implementation techniques of PARLOG
can be used for GHC and vice versa. Kernel PARLOG could be used as an inter-
mediate language of a GHC compiler. Output unification specified in a clause body
must be implemented by full unification in principle, but this unification could be
made more efficient by compile-time analysis. In a word, PARLOG can be viewed
as a realistic approximation to, or a specialization of, Guarded Horn Clauses.

PARLOG has a couple of features not in GHC. One is the notation of set
constructors for eager and lazy exhaustive search for solutions of Horn-clause pro-
grams. [t is possible to incorporate a similar notation into a user language of GHC.
A program in the user language can be compiled into GHC by using the technique
described in Chapter 7. Other features include sequential control and some extralog-
ical predicates such as ‘var’. These features are out of the scope of the definition
of GHC. Features for mere control which do not affect the result of computation
could be introduced in a control metalanguage. Other extralogical features are yet
to be studied.
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5.3. Qute

Qute (Sato and Sakurai, 1984) is a functional language based on unification.
Qute allows parallel evaluation which corresponds to AND-parallelism in logic pro-
gramming languages, but the result of evaluation is guaranteed to be the same
irrespective of the particular order of evaluation. There is no committed-choice
nondeterminism.

Although Qute and GHC were independently developed and look differently at
a glance, their suspension mechanisms, introduced with different motivations, are
essentially the same. The Qute counterpart of GHC’s guard is the condition part of
the if-then-else construct, from where no bindings can be exported. Both the guard
and the condition part can be used for conditional branching and synchronization.
An important difference is that Qute uses the notion of failure as well as the notion of
success for conditional branching, while GHC uses the latter only. As we discussed
in Section 4.10, failure is not always easy to implement correctly at least on a
sequential machine, though those difficult cases may seem rather pathological.

Another difference related to the above one is that Qute has no committed-
choice nondeterminism while GHC has one. Qute does not have committed-choice
nondeterminism (though Sato and Sakurai (1984) suggest it could) because it pur-
sues the Church-Rosser property of the evaluation algorithm. GHC has one because
our applications include a system which interfaces with the real world (e.g., periph-
eral devices).

GHC provides a simpler and disciplined user interface than Qute in the follow-
ing point. Qute has two ways of returning the result of computation: One is by
returning it as the value of an evaluable expression, and the other is by returning
it through an argument variable of the expression. GHC has the latter only. It
could be argued that Qute is a stronger language than GHC in the senses that it
has the notion of failure and that it allows functional abstraction, i.e., it allows us
to dynamically construct a function, pass it around, and apply it. However, it is
yet to be studied where these features are essential in writing a program.

5.4. Oc

Oc recently proposed by Hirata (1985) is thought of as a programming language
which simplified GHC further. Oc has thrown away any guard goals; thus a guard
always consists only of a clause head. One may wonder how, say, comparison of
integers can be specified. However, all system predicates have been changed to
return a constant indicating success or failure, so we can do conditional branching
according to that constant. Disregarding the above issue of system predicates, Oc
is a strict subset of GHC.

5.5. Communicating Sequential Processes (CSP)

We compare GHC with CSP (Communicating Sequential Processes) as de-
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scribed in (Hoare, 1978). We did not choose CSP described in (Hoare, 1985); it
is more of a computational model while CSP in (Hoare, 1978) is a proposal of a
programming language.

GHC is similar to CSP in the following points:

(1) Both encourage programming based on the concept of communicating pro-
cesses.

(2) Input and output are regarded as fundamental in the design of a language.

(3) The guard mechanism plays an important role for conditional branching, non-
determinism and synchronization.

(4) Both pursue simplicity.

The major difference is that CSP tries to rule out any dynamic constructs—
dynamic process creation, dynamic memory allocation, recursive call, etc. —while
GHC does not. Another major difference is that CSP has a concept of sequential
processes while GHC does not. A GHC program can be read as specifying com-
municating parallel processes. These differences come from the difference in design
philosophy: The design of CSP is affected by the current computer architecture,
while GHC is designed keeping independence of, but never ignoring, implementation
on existing computers.

As a result, GHC is more abstract and has a smaller set of primitives: It
uses unification instead of input, output, and assignment commands, and it uses
recursive call instead of a repetitive command. Both use the guard mechanism,
but the guard of GHC has a capability of synchronization while CSP provides the
synchronization primitives separately. Finally, CSP and GHC are different in the
manner of communication: CSP employs synchronized communication while GHC
employs buffered communication. However, this is not an essential difference, since
each communication scheme can simulate the other.

5.6. Sequential Prolog

Comparison with sequential Prolog must be made from the viewpoint of logic
programming languages rather than the viewpoint of parallel programming lan-
guages.

First of all, GHC has no concepts of the order of program clauses or the order
of goals in a clause. GHC is undoubtedly nearer to Horn-clause logic in this point.
The semantics of Prolog must explain its sequentiality; without it, we cannot discuss
some properties of a program such as termination.

GHC has lost completeness as a theorem prover of Horn-clause logic deliber-
ately, not as a result of compromise (see Section 4.9). On the other hand, Prolog
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has lost completeness rather unconsciously because of its depth-first search strat-
egy. It will be hard to straightforwardly describe the semantics of GHC within the
framework of first-order logic. This situation, however, is common also to Prolog
because of the notorious but important cut operator as well as the search strategy.
The commitment operator of GHC is the parallel of the cut operator, but it must
be a simpler construct from a formal point of view, since it has been introduced in
a more disciplined way.

Prolog features backtracking, which is a sequential implementation of the mul-
tiple environment mechanism. On the other hand, GHC is a single-environment
language. This means that an implementation of GHC needs no ‘trail stack’ used
for unbinding and the operations on it.

One problem with Prolog is that the use of ‘read’ and ‘write’ predicates pre-
vents the declarative reading of a program (see Section 2.3.3). In GHC, we no longer
need imperative predicates because the concept of streams can be well adapted to
input and output. Large data structures such as mutable arrays and databases can
also be declaratively and efficiently handled by using transaction streams as the
interface, as we will discuss in Section 6.1.

5.7. Delta-Prolog

Delta-Prolog (Pereira and Nasr, 1984) is an extension of Prolog which allows
multiple processes. Communication and synchronization are realized using the no-
tion of an event. The underlying logic which explains the meaning of events is called
Distributed Logic, which is a kind of modal logic.

One of the differences between Delta-Prolog and GHC is that Delta-Prolog
retains the concept of sequentiality and the cut operator of Prolog. Sequentiality is
essential in Delta-Prolog because it is utilized for guaranteeing the order of events.
GHC did not stick to those features of Prolog since they seemed to be no more than
peculiarities of Prolog. A parallel program in Delta-Prolog may look quite different
from the comparable sequential programs in Delta-Prolog itself and in Prolog. On
the other hand, a class of GHC programs which have only unidirectional information
flow (like pipelining) can easily be rewritten in Prolog by replacing commitment
operators by cuts, and a class of Prolog programs which use no deep backtracking
and each of whose predicates has only one intended input/output mode can be
easily rewritten in GHC also.

5.8. Other Computational Models

In this section, we compare the paradigms provided by GHC with those pro-
vided by other computational models. Shapiro (1983a) also made detailed compar-
ison between Concurrent Prolog and other models.
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5.8.1. Dataflow Computation

As we mentioned in Section 4.8, GHC can be viewed as a flexible process
description language and as a generalization of dataflow languages. Here we com-
pare GHC in detail with the conventional dataflow computational model based on
dataflow graphs, or more specifically, with the model described in (Amamiya, 1984).

GHC can be called a dataflow language in that computation proceeds based
on the availability of data. We can translate a dataflow graph into a GHC program
straightforwardly, as long as the dataflow graph does not use awkward notions as
mentioned later. A node in the dataflow model is a kind of a process, and its func-
tion can be realized by a GHC goal. An arc carries data and can be represented by
a variable possibly shared between goals. Note that such a variable may not neces-
sarily represent a stream of data: A stream must be used only when it is necessary
to process a sequence of data. Stream merging is not considered as primitive in
GHC but can be defined in the language.

However, GHC can be viewed as providing a more general and flexible dataflow
model than the conventional dataflow model. A major difference between the con-
ventional dataflow model and GHC is that the former does poor distinction between
a computational model and implementation issues, and between static program
structures and run-time process structures. For example, the idea of sharing nodes
‘for the sake of efficiency’ called for the notion of colored tokens, which seems to
be too concrete a notion to appear in a computational model. GHC, on the other
hand, well separates source programs and run-time process structures, and naturally
expresses dynamic process reconfiguration. Nevertheless, it allows efficient imple-
mentation: We use recursion in defining iterative processes, but recursive creation
of almost the same process is very cheap, as we will show in Section 6.1.

A dataflow graph is too restrictive for expressing flexible data and control
structures. In GHC, demand-driven computation, communication using incomplete
messages, ‘lenientcons’, and mutable objects can be specified elegantly in a uniform
framework, while their dataflow graph representations tend to be awkward. To sum
up, a dataflow graph seems to be appropriate only for expressing a simple class of
dataflow computation.

5.8.2. Actor Model

The actor model (Hewitt, 1977; Yonezawa, 1979; Yonezawa, 1984) is a compu-
tational model based on objects and message passing. It is considered as giving the
foundation of object-oriented programming.

The process interpretation of GHC shows major similarity to and minor dif-
ference from the actor model. Roughly speaking, an object (called an actor) in the
actor model corresponds to a goal in GHC, and message passing and receiving are
done by unification in a body and a guard, respectively. A GHC goal can represent
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either pure or impure actor; that is, it can effectively hold its internal state. A goal
representing an object ‘identifies’ another goal by a shared variable (usually used
as a stream) leading to it rather than by its name. Like the actor model, a goal can
directly send a message only to its direct acquaintances (Hewitt and Baker, 1977),
that is, it can make bindings only to those variables to which it has access. Both
models are completely distributed models. There are no global or central notions;
computation is subject only to the local causality specified by program clauses.
Lastly, both models assume potential delay in message passing.

However, there also exist several differences. First we mention the differences
in the concept of an object. In GHC, the notion of state change is nothing but a
pragmatic one, and at the language level it is described without side effects. That is,
an object with internal states can be implemented as a goal with ‘state arguments’
which hold the current set of state values, and the state change is done by reducing
itself to a new goal with different state arguments. Another difference is that not
all objects may be implemented as goals, but those only denoting values such as
individual integers may be implemented as terms. This is a kind of optimization:
We can alternatively implement individual integers as goals which accept messages
such as ‘plus’ and ‘factorial’, though it does not seem to be a natural programming
style. Two more differences follow. While an actor is activated only by receiving a
message, a GHC goal is always active and receives a message by itself by unification
in guards. Moreover, there is no one-to-one relationship between arrival of a message
and reduction of a goal. A GHC goal may be reduced to other goals without
receiving any messages, or it may be reduced by receiving two messages from the
same or different goals.

Next, we mention the differences in message passing. The most important
difference is that many-to-one communication in GHC must be specified explicitly
by means of choice nondeterminism in the commitment operation, while the merging
of messages is implicit in the actor model. Assume, for example, that a goal is to
directly send (by stream communication) a message to another goal which is not
a direct acquaintance. Then it must ask some goal to set up a new stream and
make it merged with existing streams leading to the destination goal. Here, the
merge predicate provides the necessary choice nondeterminism. Note that explicit
specification of choice nondeterminism does not necessarily cause inconvenience
in programming or inefficiency of implementation if we have an appropriate user
language and an optimizing compiler; see Section 6.1 for an optimization technique
for the merge predicate.

The actor model assumes that there is a total order in the arrivals of messages
at some object (Hewitt and Baker, 1977). On the other hand, GHC has no corre-
sponding notion; we assume no order between the instantiation of two arguments
of a goal, which is physically a natural decision. As Clinger (1981) suggests, arrival
ordering is a strong assumption which needs some form of arbitration to make it
realistic. Thanks to the arbitration implicit in the formalism, the actor model can
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discuss fairness, while the current computational model provided by GHC is too
liberal to handle fairness. Finally, we note that two messages on the same stream
are ordered even in GHC, of course.

5.8.3. Process Network Model by Kahn

Kahn (1974) presented a simple language to express networks of parallel pro-
cesses, which is conceptually very similar to GHC with the process interpretation.
Although procedural, his language can be counted as one of the ancestors of GHC.
The language is not so static as CSP: It allows recursive call and it employs buffered
communication. A channel used for one-to-one communication is almost exactly
the counterpart of a stream of GHC, except that communication is not performed
by unification but by the imperative commands. Kahn (1974) did not explicitly
state that a network allows dynamic reconfiguration, but he and MacQueen (1977)
showed a prime generator program similar to the one in Section 4.6.2 using a slightly
modified language.

A small but important difference between his language and GHC is that the
former has excluded choice nondeterminism.

5.8.4. Functional/Applicative Programming

There are many proposals of functional or applicative languages including FP
(Backus, 1978), HOPE (Burstall, MacQueen and Sannella, 1980), KRC (Turner,
1981), FEL (Keller, 1982) and Valid (Amamiya, Hasegawa and Mikami, 1983),
and some of them allow for concurrent evaluation. We compare GHC with those
languages as a whole.

GHC is similar to those functional languages in that it is a declarative language
satisfying a form of referential transparency which we called anti-substitutability in
Section 4.7.2. All these languages are free from side effects. Another point is
that many of those functional languages as well as GHC allow for demand-driven
computation and non-strict data structures. The major difference of GHC from
those functional languages is in how elegantly these features are introduced. As we
showed in Section 4.6.3, demand-driven computation can be elegantly specified in
GHC without any additional computation rules by using the incomplete message
technique. Furthermore, the data structure of GHC naturally includes incomplete
or non-strict terms, while in usual functional languages non-strict data structures
must be realized by means of lazy evaluation (call by need). Thus it can be said
that GHC has simpler and more refined concepts both on data structures and
computation rules, the latter of which owes much to parallelism.

Moreover, GHC can express quite complex information flow by using the in-
complete message technique while the functional languages can express only simple
information flow. This is why GHC can be used for describing parallel systems
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based on message passing. Note that the above comparison does not apply to the
‘functional’ language Qute (Section 5.3); however, it is questionable whether Qute
can be called a functional language in the usual sense because the evaluation of a
Qute expression may instantiate variables in the expression.

Many functional programming languages have type systems while GHC does
not. However, a user language of GHC could have a type system to make programs
more readable and reliable by providing programming systems and compilers with
more information (Bruynooghe, 1982).

A point which is advantageous to functional languages over logic programming
languages including GHC is the capability of handling higher-order entities. The
higher-order features provided by the current logic programming languages are less
expressive and less elegant.

5.8.5. Object-Oriented Languages

Since we have already discussed the computational aspects of object-oriented
languages in Section 5.8.2, here we deal with linguistic aspects. The most important
linguistic aspect common to most of the object-oriented languages is the inheritance
mechanism (Goldberg, 1983; Weinreb, 1981; Chikayama, 1984), though it is inde-
pendent of the message-passing aspect and hence is not a prerequisite for being
object-oriented. Nonetheless, the inheritance mechanism is important because it
enables differential programming, a programming methodology for obtaining a de-
sired program by specifying the differences from the existing ones.

Shapiro and Takeuchi (1983) showed how to implement inheritance in Concur-
rent Prolog, and the same technique applies also to GHC. In their method, each
object (i.e., goal) delegates the processing of a message it has received to its parent
object if it cannot process the message by itself. Thus the hierarchy of objects is
implemented by cascading them by streams. This is a good solution since relational
programming provides a suitable framework for differential programming as we
discussed in Section 3.3.2.

A problem in this solution is that the message delegation occurs dynamically
whereas the hierarchical structure is usually static. It is necessary to consider a
technique for efficient implementation. A process fusion technique (Furukawa and
Ueda, 1985) will help efficient implementation and thus will encourage differential
programming and modularization. Moreover, an appropriate syntactical support for
hierarchical programming may be useful in a user language of GHC. Note, however,
that such a syntactic support does not affect the underlying computational model
which we believe should be as simple as possible.
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Chapter 6

IMPLEMENTATION OF
PARALLEL LOGIC PROGRAMMING LANGUAGES

This chapter deals with two topics on the implementation of Guarded Horn
Clauses and other parallel logic programming languages. One is an efficient im-
plementation of many-to-one and one-to-many stream communication among pro-
cesses; the other is an efficient compiler of Guarded Horn Clauses and Concurrent
Prolog on top of sequential Prolog. The technique for the former can be applied
also to the implementation of arrays which allow constant-time access.

This chapter focuses on implementation on conventional sequential computers;
implementation on parallel computers is not discussed here. Of course, to demon-
strate the viability of parallel logic programming languages on parallel computers,
we cannot limit the scope of discussion to sequential computers. Nevertheless, im-
plementation on a sequential computer is very important.

It is most likely that our first step towards a general-purpose parallel computer
is communicating sequential computers. Then, even on a parallel architecture, it is
very likely for each processor to deal with multiple processes for the following two
reasons. First, it is unrealistic to limit the number of processes a user can create to
the number of processors available. Second, even if a lot of processors are available,
the best way to allocate two processes which communicate intensively with each
other and have little portions executable in parallel will be to allocate them on the
same processor. Therefore, the technique of running multiple processes efficiently
on a single processor is crucial for the efficiency of the whole system.

Moreover, parallelism in a source language and parallelism in implementation
can be different as we argued in Section 3.1. If for some problem we can write
a better program in a parallel language than in a sequential language, then it
is meaningful to have an efficient implementation of the parallel language on a
sequential computer.

6.1. Stream and Array Processing

In this section, the GHC predicate for merging n input streams is investigated,
and a compilation technique for getting its efficient code is presented. Using the
technique, data on input streams are transferred with a delay independent of n.
Furthermore, it is shown that the average time for the addition and the removal of
an input stream is independent of n. The predicate for distributing each item on an
input stream to one of n output streams can also be realized as efficiently as n-ary
merge. The compilation technique for the distribute predicate is applicable also to
the implementation of mutable arrays that allow constant-time access and updating.
Although the efficiency stated above could be achieved by a sophisticated compiler,
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the codes should be provided directly by the system to get rid of the bulk of source
programs and the time required to compile them. The implementation technique
described in this section was first proposed in (Ueda and Chikayama [1984a]) using
Concurrent Prolog as a base language. By altering the base language to GHC, the
technique described below has been slightly simplified.

6.1.1. Introduction

When we implement a large-scale distributed system in parallel logic program-
ming languages such as Concurrent Prolog, PARLOG and GHC, the performance of
the system will be influenced significantly by how efficiently streams as interprocess
communication channels can be merged and distributed. So we discuss how to im-
plement predicates for merging many input streams and those for distributing data
on a single input stream into many output streams. We use GHC for the following
discussions, but the results obtained are in principle applicable also to Concurrent

Prolog and PARLOG.

6.1.1.1. Importance of Streams in GHC-like Languages

As we stated in Section 4.8, GHC allows process interpretation: Processes are
expressed by goals which are executed in AND-parallel, and interprocess commu-
nication is expressed by means of shared variables appearing as arguments of the
goals. Statically, the shared variables express lists of data or messages flowing among
(usually two) goals: As computation proceeds, the values of the lists are gradually
instantiated to the end. We use the term ‘stream’ to refer to shared variables used
in this manner (Section 3.3.2).

Since interprocess communication is done by instantiating and checking streams
which have been laid among processes in advance, the efficiency of stream opera-
tions—sending, receiving, merging, and distributing—are of crucial importance.

6.1.1.2. Necessity of Dynamic, Multiway Stream Merging and Distribu-
tion

Streams need not be merged or distributed if several processes are linearly
connected by shared variables to perform pipeline processing. However, if there is
a process that needs to receive data or messages from many other processes—e.g.,
a process that manages a shared resource—a merging process must be put at the
front-end:

1‘291(01), p2(C2), ---5 Pn C’n)7
merge(C, Cy, Co, ..., Cy), shared_resource(C).

In order to accept messages from an indefinite number of processes, it must
further be possible to dynamically vary the number of input streams to be merged.
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Suppose that a newly created process needs to communicate with a shared process.
Then it must first issue a request to the front-end merging process (by using other
input streams or a ‘request’ stream) to set up a new input stream. A new stream
could alternatively be laid by attaching binary merge to one of the existing input
streams. However, communication delay will be proportional to the number of
communicating processes if this method is repeatedly used.

The purposes of message distribution can be classified into broadcasting and
routing. Broadcasting is easy at least at the source language level: Receiver pro-
cesses need only share the broadcast stream. On the other hand, routing is some-
what complex. Routing is necessary to implement public communication channels
for private communication. It may often happen that a process, say A, wants to
communicate with another process B to which no direct communication channel
has been laid. In such a case, there are two possible ways. One is to send a mes-
sage through an indirect and ‘public’ path; the other is to send a request message
(through an indirect path) to establish a direct and private communication channel
and to use it afterwards. In either case, the process A must have indirect access to
the process B; the relay processes on the way must be able to appropriately transfer
messages according to the destinations attached to the messages.

In message distribution also, it must be possible to dynamically change the
number of processes to be managed.

6.1.1.3. Related Works

Shapiro and Mierowsky [1984] dealt with the problem of merging an indefinite
number of streams (henceforth the number of input streams will be denoted by n).
They demonstrated

(1) a method to ensure n-bounded waiting and the maximum delay of O(n) by
using an unbalanced tree consisting of binary merge, and

(2) a method to ensure n-bounded waiting and a maximum delay of O(logn) by
using a 2-3 tree (Aho, Hopcroft and Ullman [1974]) consisting of binary and
ternary merge.

The term ‘n-bounded waiting’ was defined by them to mean that any message
arriving at the merging process will be overtaken by no more than n input messages
from other streams.

The delay of O(n) in Method (1) will be unacceptable when n is large and
the traffic is heavy. This method may be practical, however, in the case of essen-
tially costly communication such as interprocess communication in multi-processor
environments.

Method (2) is a major improvement over Method (1) in terms of delay. In
procedural languages, however, the delay of interprocess communication does not
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depend on the number of senders as long as it is simulated on a sequential computer.
Therefore, it is desirable to achieve a constant-time delay also in logic programming
languages.

Kusalik [1984] also dealt with bounded-wait merging of n streams. He showed
a method to ensure bounded-wait merging without resort to the operational char-
acteristics of the underlying machine or interpreter but to the extralogical primitive
‘varbl’. One of his solutions has O(logn) delay, but the number of input streams
cannot be changed. The other solutions can merge indefinite number of streams,
but they are inefficient.

The above two papers concentrate on how to program n-ary merge having the
desired properties. On the other hand, we study how to compile a naive n-ary
merge program.

After our method was published, Shapiro and Safra [1985] showed that mul-
tiway merge can be programmed in Concurrent Prolog by introducing destructive
assignment. The difference between their and our approaches is that we did not
introduce any extralogical primitives into the base language. They claim that their
approach can realize smaller delay, but there should be no essential difference in de-
lay. If our approach is specialized, housekeeping data and the code for manipulating
them can be simplified and made more efficient.

Gelernter [1984] discussed the suitability of Concurrent Prolog for the descrip-
tion of multi-process systems. He concludes that interprocess communication using
merge networks is ‘not only bulky but unduly constricting’. However, this criticism
is not from the viewpoint of descriptive power or efficiency.

6.1.2. Objectives
We have the following two objectives:

(1) To realize on a sequential computer n-ary merge and distribute with a maxi-
mum delay of O(1).

(2) To extend the solution to (1) to the case where n varies dynamically.

It is clear that (1) cannot be accomplished through the combination of binary
and ternary merge or distribute. The predicates must process all messages directly
at the top level:

merge(Ys, Xy, ...,[XIXg],..., X)) = true | Ys=[X|Zs],

merge(Zs, Xy, ..., Xk, ..., Xu).
distribute([(k,X)|1Xs1,Y:, ..., Y%,..., Y,) :— true | Y,=[XI|Z.],
distribute( Xs, Yi, o2k, Y.

If these predicates are interpreted, the cost for tail recursion can be proportional
to the size of each clause (= O(n)). However, if compiled, these predicates promise
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to yield higher efficiency, as will be discussed in Section 6.1.3.1. We should no longer
define ‘delay’ as the depth of a tree. We will define ‘delay’ as

e the time passed from the arrival of a message at a goal in a waiting state
until the original waiting state is restored by tail-recursion, during which the
message is transferred to the output stream.

The delay is calculated by the number of primitive operations which are regarded as
executable within a unit time on a sequential computer in usual complexity analysis.
Speaking more precisely, we adopt the RAM model under the uniform cost criterion

(Aho, Hopcroft and Ullman [1974]).

6.1.2.1. Outline of Sequential Implementation of GHC

We assume that our implementation adopts the following process management
technique proposed by Shapiro [1983b].

The descriptors of conjunctive goals make up a circular list called an AND-loop,
and the descriptors of candidate clauses composing a predicate make up a circular
list called an OR-loop (Figure 6.1).

Each element goal of an AND-loop is the parent of an OR-loop comprising
candidate clauses until it is committed to one of those clauses; after commitment, it
is replaced by a doubly-linked list representing goals of the body (Figure 6.3(a)). If
the body is empty, the element of the original AND-loop disappears (Figure 6.3(b)).
The parent of an AND-loop, having lost all elements, is considered a success (Figure
6.3(d)). On the other hand, failure of any AND-loop element is the failure of the
parent (Figure 6.3(e)), assuming that we adopt Closed World Assumption.

Each element of an OR-loop represents a candidate clause which has not yet
been selected for commitment, and is the parent of the AND-loop whose elements
represent guard goals. The success of an OR-loop element implies that the parent
goal can be committed to the clause corresponding to that element (Figure 6.3 (a),
(b)). On the contrary, when some element of an OR-loop fails, that element simply
disappears. The parent goal of an OR-loop, having lost all elements, is considered
a failure (Figure 6.3(c)).

The system has a queue called Process Queue in which leaf elements of a tree
formed by AND/OR-loops (i.e., elements which are not parents of other loops; see
Figure 6.2) await execution. A clause suspended due to the dataflow restriction
waits in the waiting list attached to the variable that caused suspension instead of
waiting in Process Queue. That clause is re-scheduled when the variable is instan-
tiated.

One possible optimization of the above method is to execute head unification
and simple guard goals as an indivisible sequence of operations. We call it immediate
check. If an immediate check succeeds, we need not create an OR-loop. Otherwise,
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an OR-loop is created for those clauses which have suspended during immediate
check and which have succeeded in immediate check but have complex guards, and
they wait for instantiation of variables.

6.1.3. Implementation of the Merge Predicate

6.1.3.1. Examination of n-ary merge

The n-ary merge predicate is defined by n clauses of the following form if we
ignore the base cases for termination which will be discussed in Section 6.1.3.3.5:

e The kth clause (k=1,...,n):

merge(Ys, Xy, ...,[XIXg],..., X)) - true | Ys=[X[|Zs],
X

)
merge(Zs, Xy, ..., Xk, ..., Xp).

This predicate has the following characteristics:

(1) To see if the cth clause is selectable, one need only examine the cth argument
(henceforth we number the arguments starting with 0).

(2) Upon the tail recursion employing the cth clause, only the Oth and the cth
arguments change compared with the original goal. Therefore, the argument
list of the tail-recursive goal can be obtained by slightly modifying that of the
original goal.

(3) When all clauses are in a wait state and one of the argument variables is
instantiated, only one clause (or two, including the base case) needs to be
re-examined.

Now we will consider tail recursion. Suppose that a goal G selects a clause
C and a recursive body goal G’ is generated whose kth argument is the same as
that of G. Then the wait condition of each program clause with respect to G’ is
the same as that with respect to G as regards the kth argument; that is, if the
unification of G with the head of some clause suspends at the kth argument, then
it should suspend also for G’ unless other body goals in the clause C instantiate the
kth argument of G.

Stating the above property in terms of n-ary merge, we get the following.

(4) After tail recursion employing the cth clause, we have to examine the following
clauses until some selectable clause is found or all clauses to be examined have
been examined:

(a) the cth clause itself,

(b) clauses which must have been but have not been examined in the previous
call due to the selection of some other clause, and
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(¢) clauses which must be examined again as the result of the unification
invoked in the body of the cth clause.

Possibility (c¢) is not directly related to tail recursion, so we do not count it
as the cost of tail recursion. Possibility (b) refers to the clauses that have
been ‘carried over’: Once they are examined, they will suspend or become non-
candidates due to failure of unification, or they will be selected and again be-
come candidates after tail recursion. Therefore, the average number of clauses
to be checked after each tail recursion does not depend on the total number of
clauses.

From the above considerations, we can conjecture that n-ary merge can process
each message within a constant time. Note that Warren [1980] proposed an imple-
mentation technique of sequential Prolog that takes advantage of the characteristics

(1) and (2).

6.1.3.2. Implementation Technique for Fixed-Arity merge

To efficiently implement n-ary merge, we have to consider the following:

(1) OR-loop (with O(n) elements) must not be created and discarded upon each
recursion even if all clauses suspend. In order to prevent examination of clauses
not worth examining, it is best to manage candidate clauses within the descrip-
tor of a goal.

(2) The argument list must be re-utilized.

In the following sections, we show a general compilation technique which
achieves a constant-time delay when applied to n-ary merge. The technique is
applicable to other predicates as long as they have no user-defined goals in their
guards. However, while our technique efficiently processes multiple waits of a goal,
most programs we write do not wait for the values of two or more variables simul-
taneously; for such programs a simpler compilation technique could be used.

We adopt Closed World Assumption throughout Section 6.1. Hereafter, the
number of clauses composing the predicate will be denoted by M, and the number
of arguments by V.

6.1.3.2.1. Configuration of a Process Descriptor

A process descriptor, or the descriptor of a goal, has the following items.
(1) AND Brothers: Two pointers for constructing an AND-loop.

2) Process Queue Pointer: A pointer for designating the next element in a Process
g g
QU,BUG.
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(3)

(7)

(8)
(9)

Candidate Queue: A queue of candidate clauses of the goal managed by the
process descriptor. At most M elements.

Clause States: An array indicating whether each clause is in the candidate,
suspend, or fail state. M elements.

Clause Backward Pointers: An array of pointers designating entries in the
waiting lists attached to uninstantiated variables that suspended candidate
clauses. One element for each clause. Each pointer is meaningful if and only if
the corresponding Clause State is suspend.

Suspend/Fail Table: The reasons why a particular clause was not selected for
commitment can be attributed to some of the arguments of the goal. Thus, if
these arguments change upon tail recursion, that clause may become selectable.
Therefore, a table of pairs (¢, k), where ¢ is the number of the suspended or
failing clause and k is the number of the argument that may be the cause, is
maintained. This table must enable

e efficient sequential retrieval of elements containing ¢, and
e efficient deletion of elements containing k.

For example, the structure shown in Figure 6.4 fulfills this condition. The
maximum number of elements depends on the predicate; in the case of n-ary

merge, it is O(N + M) and hence O(n).

Fail Count: The total number of clauses that cannot be selected for the current
goal due to failure of unification.

Program Code: A pointer to the predicate’s code.

Argument List: Arguments of the goal. N elements.

6.1.3.2.2. Operations

A. Creation of a Process Descriptor

When some predicate is newly called (i.e., not as tail recursion), the area for

the process descriptor is allocated and its entries are set up as follows:

all clauses are entered in Candidate Queue (3),

all Clause States (4) are set to candidate,

all Clause Backward Pointers (5) are left undefined,
Suspend/Fail Table (6) is cleared,

Fail Count (7) is set to 0, and
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Fig. 6.4. Sample Data Structure of Suspend/Fail Table
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e Program Code (8) and Argument List (9) are set up.

The completed process descriptor is entered in the AND-loop by appropriately
modifying AND Brothers (1) of this and neighboring goals. It is also entered in
Process Queue by making it designated by Process Queue Pointer (2) of the last
element.

B. Selection of a Clause

B-1. If Candidate Queue is not empty, instructions for unifying the arguments of
the first candidate (say the cth clause) and those of the goal (Argument List of the
process descriptor) are executed. In the case of n-ary merge, only the instructions
for the cth argument are executed.

e If this succeeds, the body goals are executed (see D).
e If this fails,
(1) Fail Count is incremented by 1,
(2) Clause State of the cth clause is set to fail,
(3) Suspend/Fail Table is updated (cf. Section 6.1.3.2.3), and
(4) other candidate clauses in Candidate Queue are tested.
e If this suspends,
(1) Clause State of the cth clause is set to suspend,
(2) Suspend/Fail Table is updated,

(3) the pair (p, ¢), where p is the pointer to the process descriptor and ¢ is
the number of the clause, is entered in the waiting list of the variable that
appears in the goal and caused the suspension,

(4) Clause Backward Pointer for the cth clause is made to point to the pair
entered in (3), and

(5) other candidate clauses in Candidate Queue are tested.

B-2. If Candidate Queue is empty and Fail Count is equal to M (= the number of
clauses), the goal ends with failure since we have adopted Closed World Assumption
here. Otherwise, execution of the current goal is suspended.

C. Instantiation of Variables

When a variable that has suspended unification invoked in guards is instanti-
ated by unification invoked in some clause body, the following is done for each entry
(p, ¢) in the waiting list of that variable.
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e The following is done for the process descriptor designated by p.

(1) Clause State of the cth clause is set to candidate, and c is entered in
Candidate Queue.

(2) All elements of the form (¢, —) (‘=’ stands for ‘don’t care’) are deleted
from Suspend/Fail Table.

(3) This process descriptor is entered in Process Queue.

D. Execution of the Body

If the body of a clause selected for commitment (say the cth clause) has a
recursive call, the following tasks are done.

(1) Assume that the arguments of the head and the arguments of the recursive
call differ in the kyth, koth, ..., k;th arguments. For each k; (i = 1,...,1), the
following are done.

e Elements of the form (d, k;) are searched from Suspend/Fail Table, and
for each d, the following are done.

o If Clause State of the dth clause is faul, Fail Count is decremented by
1. If it is suspend, the entry of the waiting list pointed to by Clause
Backward Pointer is eliminated.

e Clause State of the dth clause is set to candidate, and d is entered in
Candidate Queue.

e Elements of the form (d, —) are deleted from Suspend/Fuil Table.
e The k;th element of Argument List is rewritten.
(2) The cth clause is entered in Candidate Queue.
(3) Clause selection (cf. B) is performed.

If goals other than a recursive call are contained, we generate new process
descriptors for them. However, short-lived goals such as unification can be executed
immediately after commitment without making process descriptors. In particular,
a unification goal in a clause body never suspends unless it is indirectly called from
some guard, and therefore it need not prepare for suspension if we disallow any
user-defined goals in guards. Thus the output unification in n-ary merge can be
efficiently executed.

If there is no recursive call, the area for the original process descriptor can
be released after all the pairs (p, ¢) entered in the waiting lists of uninstantiated
variables in B-1 are eliminated. However, there are cases in which this area can be
re-utilized for optimization (cf. Section 6.1.3.4).

- 101 —



6.1.3.2.3. Management of Suspend/Fail Table

The purpose of managing Suspend/Fail Table is to minimize the number of sus-
pended clauses which must be woken up when some variable gets instantiated. We
must carefully design the management scheme of clauses so that all the suspended
clauses which must be woken up will be correctly woken up.

If n-ary merge is called as follows,

Oth cth
:- merge(Y¥s, ..., Xs, ... ).

the cth clause suspends. In this case, the cause of suspension lies only in the
cth argument of the goal; even if another clause were selected and tail recursion
took place, tail recursion itself would not remove the cause since the cth argument
remains the same. However, there are more complex cases where

e the ith clause suspends or fails due to the kth argument,

e the jth clause is selected and its tail-recursive goal does not change the kth
argument, but

e the ith clause must be woken up upon tail recursion.

Consider the following example:

Goal: :— p(lal, [1).
Program: p(X, X) :- true | true.

p([AIX], Y) :- true | p(X, Y).

If head unification is done from the left to right, head unification of the first program
clause fails at the second argument. However, we should attribute the cause of
failure both to the first and the second arguments. Actually, if the second clause
is selected and tail recursion takes place, the first clause becomes selectable though
the second argument remains unchanged.

To generalize, when the unification of the kth argument of the cth clause sus-
pends or fails, it suffices to enter in Suspend/Fail Table the pair (¢, i) for each
¢ such that the ith argument is ‘related to’ the kth argument. Here, the term A
is said to be ‘related to’ (henceforth denoted by R;) the term B if some variable
appearing in A is ‘related to’ some variable in B; and a variable V] is said to be
related to a variable V5 if V7 and V5, are related by the reflexive transitive closure
of the following relation R,.

e Relation R,: both variables appear together in a goal of the guard (if the guard
is empty, R, is the sameness of the variables).

Example : For the cth clause of n-ary merge, the quotient A/R; of the set of
arguments A by R; is
{{i} |i=1,...,n}.
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For the clause
p(I,J,K,L,M) :- a(I,J), b(J,K), c(L,M) | true.

we get

{{0,1,2},{3,4}}.

The number of elements that are simultaneously entered in Suspend/Fail Table
does not exceed

Z (maximum size of the elements of>
‘(set of arguments)/R;’ :

clauses
In the case of n-ary merge, this value is O(n).

Note that for n-ary merge, we can specialize or simplify the data structure of
Suspend/Fail Table and the operations for it, since the only possible entries are of
the form (e, ¢).

6.1.3.3. Properties of the Fixed-Arity Merge

We will now examine the properties of n-ary merge compiled using the tech-
nique presented in Section 6.1.3.2. The existence of base-case clauses will not be
considered here. It will be discussed later in Section 6.1.3.3.5.

6.1.3.3.1. Space Efficiency

The size of each item of a process descriptor other than Suspend/Fail Table
is obviously no greater than O(n), and the size of Suspend/Fail Table is O(n), as
stated in Section 6.1.3.2.3. Therefore, the size of each process descriptor is O(n).
The size of the program code will be discussed in Section 6.1.3.3.4.

6.1.3.3.2. Time Efficiency

We consider the time required for processing a message arriving at n-ary merge
waiting for some input.

A. Creation of Process Descriptors: O(n), but we can ignore it since this must be
done only once.

B. Head Unification: Only one clause is woken up when a message arrives. Then
the cost for the head unification is O(1), because unification must be attempted
for only one argument. It is O(1) even when the unification suspends or fails,
because the cost accompanying the suspension or the failure (i.e., updating
of Suspend/Fail Table and the waiting lists of variables) is O(1) by using an
appropriate data structure for Suspend/Fail Table (Section 6.1.3.2.1).
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C. Instantiation of a Variable: As stated above, only one clause is woken up and
each task shown in Section 6.1.3.2.2-C takes constant time.

D. Tail Recursion: When the cth clause is selected for commitment, the only
clause to be checked again is the cth clause. Furthermore, only two entries of
Argument List need be rewritten. Therefore, the time required for the recursive

call is O(1).

Therefore, the delay of a message arriving at n-ary merge in an input-wait
state does not depend on n.

When the merge process is busy processing other messages, a newly arriving
message may not appear in the output stream within a constant time. However,
once the processing of that message starts, it ends within a constant time.

6.1.3.3.3. Order of Clause Checking

Individual clauses of n-ary merge are checked in the order they are entered
in Candidate Queue. Since a selected clause is reentered at the tail of the queue,
n-bounded waiting is achieved. Moreover, clauses which have suspended or failed
are not in Candidate Queue, so they do not influence the efficiency.

6.1.3.3.4. Program Size

The codes for operations A and C in Section 6.1.3.2.2 is common to all pred-
icates. The code for operations B and D are prepared for each predicate. In the
case of n-ary merge, its code size is O(n), because both B and D are constant-time
tasks.

However, since the codes for individual clauses are almost the same, they can
be parameterized with respect to the clause numbers. If this is done, the code size
of the whole predicate is reduced to O(1).

This parameterization could be accomplished by a sophisticated compiler ca-
pable of detecting similarities among the clauses. However, even if such a compiler
were employed, it would not reduce the size of the source program (O(n?)) and
the time required for compilation. Furthermore, there may be only a few programs
which can benefit from this optimization. Considering all these things, the most
realistic approach is to let the system provide the code for n-ary merge.

Now we have shown that the code size for n-ary merge can be made indepen-
dent of n. This is still unsatisfactory, however, since the system will have to provide
n-ary merge for various n’s. If these were provided as separate codes, the amount
of codes would be O(nqz), Where 1,4, is the maximum value of n.

However, here again, drastic optimization is possible. Because the code for
n-ary merge remain almost the same even if n varies, it can be parameterized with
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respect to n. This parameterization realizes a family of predicates for merging any
number of inputs with a single code whose size is independent of n,,... Note that
it is mandatory that these codes be provided by the system, because the size of the
corresponding source program is O(nmaIB).

6.1.3.3.5. Base Case

To terminate n-ary merge, a clause describing the base case must be carefully
supplied. The clause

merge(Ys, [1, ..., [1) :- true | Ys=[].

is logically correct, but it cannot be efficiently processed by the above implemen-
tation technique. Suppose that all input streams except the last one have been
terminated, that is, the original goal

merge(Ys, Xy, ..., Xu_1, Xi)
has been reduced to the following goal:
merge(Ys', [1, ..., [1, Xs')

If we use the technique shown in Section 6.1.3.2.2, the delay of the message in
X s’ may no longer be small, since we may check all the input streams when we
execute the base-case clause. One way to avoid it is to record (in the process
descriptor) which input clauses have been terminated and to use this information
to optimize the code for the base case. An alternative, much simpler solution uses
the ‘otherwise’ construct proposed by Shapiro and Takeuchi [1983]:

merge(Ys, [1, ..., [1) :- otherwise | Ys=[].

As explained in Section 4.10, an ‘otherwise’ goal in a guard succeeds if and when
all other guards fail. A clause containing ‘otherwise’ in its guard should be put into
Candidate Queue only after Fail Count reaches the number of clauses not containing
‘otherwise’. With ‘otherwise’, the base-case clause does not increase the delay
of message transfer or the size of the process descriptor, since it is never scheduled
until all input streams are terminated. When the base-case clause is scheduled, all
input streams must be instantiated (usually to [1) and therefore that clause turns
out to succeed or fail without suspension.

6.1.3.4. Dynamic Change of the Number of Input Streams

A merge predicate with a fixed arity is useful only when the number of inputs is
statically known. We will now expand this to allow the addition of new streams and
the removal of terminated streams. The program shown below has an additional
(say the (—1)th) argument for accepting requests for new input streams.
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e The kth clause (transfer) (k=1,...,n)

merge(S, Ys, Xy, ...,[XKIXg], ..., X,) = true | Ys=[X|Zs],
X

)
merge(S, Zs, Xy, ..., Xk, o X))

e The 0th clause (addition)

merge([ X, 41181, ¥s, Xy, ..., X,) :- true |
merge ( S, Ys, Xq, ..., Xo, Xut1).

e The (—k)th clause (removal) (k=1,...,n)

merge(S, Xs, Xy, ..., I, ..., X,—1, X)) :- true
merge(S, Xs, Xy, ..., X, ..., Xouo1).

e Base Case

merge([], Xs) :- true | Xs=[].

The clauses for adding or removing streams are not tail recursive, but in those
clauses the clause heads and the body goals are very similar. Therefore, if the
process descriptors for those body goals can be constructed by modifying the original
ones, it is much more efficient than to create them from scratch.

In GHC, process descriptors cannot be managed by a simple stack scheme but
by a general memory management technique. Here we will suppose that the Buddy
system (Knuth [1968]) is employed. The size of each partitioned area will then be
a power of two, and each process descriptor is created in one of these areas. When
it is created, each item must be placed depending on the size of the area allocated
so that the cost of relocation with the addition and removal of streams can be
minimized. Then, even when the number of inputs changes, most of the existing
information need not be moved as long as the area is large enough to accommodate
the new descriptor.

We will show the operations to be performed when the (—n)th to Oth clauses
are selected and the process descriptor is reusable. We use the value unused as
one of the possible values that Clause State can take, and when the area for Clause
States is allocated, we fill its unutilized portion with unused’s.

For simplicity, the following description is specialized to the merge predicate.

A. When the 0th Clause is Selected and a New Stream is Added

(1) (Operations accompanying the addition of the 4+(n + 1)th clauses) If Clause
States of the +(n + 1)th clauses are not candidate, they are set to candidate
and those clauses are entered in Candidate Queue.
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(2) The 0th clause is entered in Candidate Queue.
(3) The (—1)th and the (n + 1)th arguments of Argument List are updated.

4) The program code is replaced (If the program is parameterized with respect to
g g
n, only the parameter value is replaced).

We must note that Clause States of the +(n+1)th clauses may already be candidate,
in which case these clauses are already in Candidate Queue. This happens in case
the process descriptor area had been used by some predicate with more clauses.

B. When the (—c)th Clause (¢ > 0) is Selected and an Empty Stream is Removed

(1) (Operations accompanying the change of the cth argument) FElements of the
form (¢!, ¢) (only (¢, ¢) can exist, if any) are searched from Suspend/Fail Table.
For each ¢, the following is done.

o If Clause State of the ¢’th clause is fail, Fail Count is decremented by 1. If
it is suspend, the entry in the waiting list pointed to by Clause Backward
Pointer for the ¢’th clause is deleted.

e Clause State of the c/th clause is set to candidate, and ¢’ is entered in
Candidate Queue.

e Elements of the form (¢/, —) (only (¢, ¢) can exist, if any) are deleted from
Suspend/Fail Table.

(2) (Operations accompanying disappearance of the £nth clauses)

e If Clause State of the nth clause is faul, Fail Count is decremented by 1.
The same operation is done also for the (—n)th clause.

e Elements of the form (+n, —) (only (n, n) and (—n, n) can exist, if any)
are deleted from Suspend/Fail Table.

e Nothing is done with the +nth clauses in Candidate Queue. When those
clauses, which have disappeared, are dequeued, their Clause States are
changed to undefined.

(3) The (—c)th clause is entered in Candidate Queue.
(4) The cth argument of Argument List is updated.
(5) The program code is replaced.

Step (1) is performed in case the (—c)th clause is selected after the cth clause
is entered in Suspend/Fail Table due to the failure of the unification of the cth
argument.

It is clear that both A and B can be performed within a constant time.
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When the area for the current process descriptor cannot be reused to add a new
stream, it is necessary to allocate a new area of twice the size and to create a new
descriptor in that area. On the contrary, when it becomes possible to express the
process descriptor with half the size of the current area (by the repeated removal of
streams), the process descriptor can be packed and the unused area can be freed.
These operations are shown below.

A’. Addition of Streams Entailing Moving to a New Area
1) An area twice as large as the current process descriptor area is allocated.

(
(2) All items of the original process descriptor are copied.
(

3) The entries designated by all meaningful Clause Backward Pointers (i.e., ones
for suspended clauses) are made to point to the new area.

(4) The operations described above in A are performed.

B’. Deletion of Streams Entailing Compaction
(1) The operations described above in B are performed.

(2) Candidate Queue is examined and the all the clauses other than the —(n—1)th
to the (n — 1)th clauses are deleted, if any.

(3) The original process descriptor is packed in the top half of the current area.
(4) The bottom half of the area is freed.

Step (2) is necessary in this case because we have to reduce the number of
elements in Candidate Queue to free the area.

We will now consider the time complexity of A’ and B’. If the time needed
for memory allocation and release is ignored, both A’ and B’ can be done within a
time of O(n). The time complexity of memory allocation and release by the Buddy
system is

O(log(size of the whole area managed by the Buddy system)).

This value, however, is determined only by the execution environment of the
program, which is independent of n. Therefore, if the execution environment is

fixed, the time needed for A" and B’ is O(n).

In order to add and remove streams within an average time of O(1), it must
be guaranteed that the frequency of the operations A’ and B’ is at most once every
O(n) changes of the number of streams. This is easily achieved by doing B’ only
when it becomes possible to represent the process descriptor with (for example)
one-fourth of the current area.
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6.1.4. Implementation of the Distribute Predicate

This section describes the outline of the implementation technique of the pred-
icate for message distribution. We do not go into details since the implementation
is much simpler: We need not implement multiple waits, which is the main source
of the complexity of stream merging.

6.1.4.1. Distribution to a Fixed Number of Output Streams

The predicate distribute with n output streams is expressed by n + 1 clauses
of the following form:

e The kth clause (k=1,...,n)

distribute([(k,X)IXs], Yy, ..., Y%, ..., Y,) :— true | Yi=[X|Z,]1,
distribute( Xs, Yi, -2, .., Yo

e The Oth clause

distribute([], Y7, ..., Y3) :- true | Y7=[1, ..., Yi.=I1.

First, we will consider the situation where there is no wait. We must enable
random access to clauses because, if the first to the nth clauses were individually
checked, the time complexity would be O(n). The DEC-10 Prolog compiler (Warren
[1977]) generates a code that selects clauses using the hash value of the principal
functor of the first argument. In the case of distribute, hashing by the tertiary
functor (a functor of the third level) of the first argument is necessary to select a
clause within a constant time.

Next, we will consider how to achieve the code size of O(1). Parameterization
of the code of each clause is of course necessary. In the case of distribute, we should
further make use of the fact that clauses can be selected by simple indexing rather
than hashing; a hash table requires an area of O(n).

What if there is a wait? The first to the kth clauses all wait for the Oth
argument. If they individually wait, the desired efficiency cannot be achieved.
Those clauses should be managed together also while waiting. In other words, they
should be entered in the waiting list of a variable as a cluster of clauses. When the
Oth argument is instantiated, the appropriate clause must be selected by indexing.

6.1.4.2. Dynamic Change of the Number of Output Streams

As in the case of merge, it is an important function to dynamically change of
the number of output streams. This can be implemented by adding the following
clauses:
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e Addition

distribute([grow(Y,+1)|Xs],Yy, ..., Y,) :- true |
distribute( Xs, Yi, ooy Yo, Yog1).

e Deletion

distribute([shrink| Xs],Y7, ..., Y,_1, Y,) :- true
distribute( Xs, Yi, ..., Y,,_1).

In order to efficiently change the number of output streams, a technique similar to
the one described in Section 6.1.3.4 can be applied.

6.1.5. Applying Implementation Technique of Distribution Predicates to
Mutable Arrays

The lack of mutable arrays (arrays of rewritable elements) is often counted
as one of the problems of Prolog. Of course, arrays can be simulated by assert
and retract, but such arrays are not logical arrays. One direction to realize logical
arrays is to make a correspondence

e Arrays: Data of the array type
e Operations on arrays: Predicates that manipulate array arguments

and to gain efficiency by a dedicated data structure. However, it is also possible to
make the following correspondence

e Arrays: Goals (i.e., processes)
e Operations on arrays: Streams of messages

by the program

array(n, S) :- array(S, Xy, ..., X,).

array([read(k,Yr) IS], Xy, ..., Xk, ..., X)) = true | V=X,
array( S, X, oo, Xi, oo, X0 (for k=1,...,n)
array([write(k,Y,)IS1,Xy, ..., Xk, ..., X,) :- true |

array( S, X, oo, Yo, o, X)), (for k=1,...,n).

This is a rather natural solution if we regard arrays as mutable objects. Eriksson
and Rayner [1984] also have independently proposed this solution. This program
is very similar to distribute, and constant-time accessing and updating is realized
by applying the implementation technique for distribute. It is also possible to add
clauses for inquiring and/or changing the number of elements. Note that all trans-
actions with an array object are done through the argument S of the binary ‘array’
predicate; a programmer does not have direct access to any of the array elements.
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6.1.6. Summary

We investigated the properties of n-ary merge written in GHC and presented
its implementation which transfers each message with a delay independent of n.
Furthermore, we showed that an input stream can be added and removed within an
average time of O(1). With respect to n-ary distribute also, we gave the outlines
of implementation as efficient as merge. Mutable arrays that allow constant-time
accessing and updating were shown to be realizable by the same implementation
technique as that for distribute.

However, it was concluded that these predicates should be supported directly
by the system. If the system provides them, merge and distribute for all arities
can be realized with the constant-size code. It is unrealistic to obtain the code by
compiling a source program, not for the reason of the efficiency of the code obtained,
but for the reason of the bulk of the source program and the time needed for com-
pilation. Nevertheless, it is favorable in many respects (e.g., for the construction of
programming systems) that the semantics of the system-supplied code is expressible
as a GHC program.

An alternative to the system predicate approach is to enhance the descriptive
power of source programs. The fact that the above predicates allow compact repre-
sentation at the object-code level indicates sparseness or redundancy of their source
codes. Therefore, if we introduce new source-level notations, they will enable more
concise representation of those predicates and also will make the compiler approach
more realistic.
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6.2. Concurrent Prolog Compiler and GHC Compiler on Top of Prolog

This section describes compilers of Concurrent Prolog and GHC which use
(sequential) Prolog as target and implementation languages. Object programs ob-
tained can further be compiled into machine codes by a Prolog compiler. Due to
the similarity among the source, target and implementation languages, the compil-
ers and the runtime supports were small and very rapidly developed. Benchmark
tests showed that (twice) compiled Concurrent Prolog programs ran 2.7 to 4.4 times
faster and 2.7 to 5.3 times slower than comparable Prolog programs running on the
interpreter and compiler, respectively, of the same Prolog system. GHC programs
ran almost as fast as the comparable Concurrent Prolog programs with mode dec-
larations. The contents of this section is based on (Ueda and Chikayama [1984b])
and (Ueda and Chikayama [1985]).

6.2.1. Introduction

To evaluate a programming language in terms of efficiency, one must try to
have a serious implementation of the language. It is unfair to underrate a language
by its unserious implementation for the purpose of rapid prototyping. In the case
of Concurrent Prolog, the interpreter in the original paper (Shapiro [1983a]) must
be regarded as such a prototype. Although the availability of the interpreter was
quite important for the popularization of the language, it was useful only for the
experiments of small programs because the the slowdown from the bare Prolog
system on which the interpreter ran amounted to two orders of magnitude. This
motivated us to develop a Concurrent Prolog compiler. We made a compiler of
Concurrent Prolog first, because Guarded Horn Clauses had not been invented at
that time. The compiler of GHC, based on the Concurrent Prolog compiler, was
developed very rapidly after GHC was invented.

The development of these compilers has the following two major purposes:

(1) To provide a programming environment in which one can write and test pro-
grams of considerable size.

(2) To know how fast Concurrent Prolog and GHC programs run.

We chose (sequential) Prolog for the target and the description languages for
the following reasons.

(1) A Prolog program can be compiled into efficient machine codes (Warren [1977]).

(2) Similarity among the source, target, and description languages enables rapid
development.

(3) We can obtain a portable implementation.

(4) The laborious work of writing system predicates is greatly reduced by interfac-
ing between Concurrent Prolog/GHC and Prolog.
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Our approach is similar to the approach taken by Gregory [1984] when he wrote
a PARLOG system on top of Prolog. However, it did not optimize unification, and
its performance on a compiler-based Prolog implementation has not been reported.
We tried to get maximum efficiency on a compiler-based Prolog implementation.
The difference of underlying implementations is never trivial, because accumulation
of small hacks may greatly improve the efficiency under an optimizing compiler,
while the improvement should not be so drastic under an interpreter.

6.2.2. Linguistic and Non-Linguistic Features

Our implementation of Concurrent Prolog is basically a compiler version of the
original interpreter by Shapiro [1983a]. Some linguistic extensions we have made
are listed below. These features are in common with the GHC compiler, since the
GHC compiler is based on the Concurrent Prolog compiler.

(1) Input and output have been made declarative. There is no ‘read’ or ‘write’
predicate a la Prolog. Instead, we have ‘instream’ and ‘outstream’ predicates
which take one argument: a stream of request messages. Each request message
must be an appropriate Prolog I/O goal. For example, if the goal

outstream([write(ok), nl | _1)

is executed, the message ‘ok’ followed by a newline is output. In order to
guarantee the uniqueness of the input and output streams, neither ‘instream’
nor ‘outstream’ can be called twice. While ‘outstream’ accepts messages
related to output only, ‘instream’ accepts messages related to output as well
as to input. This feature of ‘instream’ is used for synchronizing output to the
terminal and input from it. In fact, we can perform all I/O operations using
‘instream’ only; ‘outstream’ has been provided for mere convenience.

(2) Mode declaration facilities similar to those of DEC-10 Prolog (Bowen, Byrd,
Pereira, Pereira and Warren [1983]) have been provided. The purpose is to get
smaller and more efficient codes.

On the other hand, our compilers inherit the following linguistic and non-
linguistic restrictions from the original interpreter.

(1) The scheduling of candidate clauses is depth-first and hence unfair. Moreover,
when some clause suspends, the partial result of computation is not retained
for subsequent execution but just discarded.

(2) There is no distinction between suspension and failure. A goal for which there
are no immediately selectable clauses may be re-scheduled, whether the cause
is finite failure or suspension.

(3) Suspended goals do busy-waiting.
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These restrictions greatly simplify implementation on Prolog and are very effec-
tive for performance. Although they might look true restrictions at a glance, they
cause little inconvenience to the execution of most Concurrent Prolog and GHC
programs we have written:

(1) Most guards are used just for synchronization and conditional branching rather
than ‘OR-parallel problem solving’. There have been few programs that require
the (pseudo-) parallel execution of two or more guards.

(2) Typical Concurrent Prolog and GHC programs are written so that all goals
may succeed except for small ones in guards. Failure of a whole program is a
rather exceptional situation in Concurrent Prolog and GHC.

(3) By employing bounded depth-first scheduling (see below), the frequency of
suspension can be made small in most applications.

The GHC compiler has another restriction: It does not allow any user-defined
goals in a guard. The purpose of this restriction is to enable simple static analysis
of suspension. Note that this restriction is very similar to the restriction adopted
by Flat Concurrent Prolog (Mierowsky, Taylor, Shapiro, Levy and Safra [1985]).

Non-linguistic features include scheduling strategies and trace facilities.

Since conjunctive goals must be solved in (pseudo-) parallel, we have to im-
plement a scheduler of goals. We decided to use one goal queue, and employed
100-bounded depth-first scheduling as the default strategy. N-bounded depth-first
scheduling means that each newly-scheduled goal is n-reducible. A newly-scheduled
goal is a goal which was enqueued at the rear previously and is now dequeued at
the front. That a goal G is n(> 0)-reducible means that when G is reduced to By,
..., B,, by the following clause,

H :- Gl,...,leBl,...,Bm. (k>0,m>0)

each B; (i =1,...,m) is (n — 1)-reducible prior to the execution of the other goals
in the queue. That a goal G is 0-reducible means that G must be pushed at the rear
of the goal queue and the goal at the front must be executed next.

It is easy to see that n-bounded depth-first scheduling is so general as to in-
terpolate between breadth-first and depth-first scheduling. Bounded depth-first
scheduling has both the fairness of breadth-first scheduling and the efficiency of
depth-first scheduling, as we will see later.

The initial bound value for each goal can be specified at run time. When
bounded depth-first scheduling is unnecessary, one can tell the compilers to generate
a simpler code that uses (unbounded) depth-first scheduling and will gain more
efficiency. We can also mix these two strategies in a program. In stream-oriented
programs, the check of a bound value is important only for a producer goal which
may generate arbitrarily many data autonomously: Other goals are suspended by
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the synchronization mechanism of Concurrent Prolog and GHC irrespective of the
scheduling strategy. Therefore, we can restrict the bounded depth-first scheduling
to the producer predicates while retaining the fairness of scheduling.

Execution trace is enabled by compiling a source program with the ‘trace’
option.

6.2.3. Compilation Technique

A general advantage of a compiler approach is that we can statically determine
parts of what we must determine at run time in an interpreter approach. In the
case of Concurrent Prolog and GHC, such parts include scheduling and unification.
These two aspects are discussed in the following.

6.2.3.1. Scheduling

Our compilers have inherited the following notions from Shapiro’s original in-
terpreter:

(1) a queue (represented as a difference list) of goals to be solved
(2) a flag showing whether computation may deadlock or not
(3) a cycle marker for detecting termination and deadlock of computation.

However, our compilers have not inherited a scheduler predicate. The compil-
ers generate one Prolog predicate (object code) for each Concurrent Prolog/GHC
predicate. When such a Prolog predicate is called, it is given as arguments a goal
queue, which will be called a continuation hereafter. The called predicate must
perform scheduling tasks by itself, that is, it must appropriately handle the given
continuation and start another (Prolog) goal when it has finished the tasks for itself
or when it swaps out its caller. The goal to be started is either the first goal in the
given continuation or a goal provided by the predicate itself. In the former case, we
must pop the first goal, provide it with the rest of the continuation and call it. In
the latter case, the given continuation is passed to the new goal. A Prolog predicate
generated by the compilers never fails unless it calls a nonexistent predicate.

Each Prolog predicate generated by the compilers consists of the following three
parts:

(1) (optional) Prelude part for tracing and clause indexing,

(2) Clause-by-clause part (one Prolog clause for each Concurrent Prolog/GHC
clause) for goal reduction, and

(3) Postlude part for re-scheduling itself when all clauses fail to be selected or the
bound value reaches zero.
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Figure 6.5 shows the source and the object programs of quicksort in Concurrent
Prolog. Figure 6.6 shows the source and the object programs of quicksort in GHC.
Note that candidate clauses are tested sequentially in our implementation.

Each compiled clause has five additional arguments:

(1) A counter maintaining the current bound value used for bounded depth-first
scheduling.

(2), (3) The head and the tail of the difference list representing a continuation.

(4) A deadlock flag showing whether or not some goal has been reduced since the
last occurrence of the cycle marker. This flag is checked by the next cycle
marker for deadlock detection.

(5) The initial bound value given at run time.

Each element of a continuation has the following form:
$(Goal, Qh, Qt, Deadlock_flag) .

Goal is a Prolog goal corresponding to some Concurrent Prolog/GHC goal. When
Goal is called, its additional arguments must be given appropriate values. Qh,
Qt, and Deadlock_flag are ‘taps’ of Goal used for this purpose. That is, Qh, Qt,
and Deadlock_flag have been unified with the second, the third, and the fourth
additional arguments of Goal, respectively.

A Concurrent Prolog or GHC clause
Head :- Guard | Body.

is transformed into a Prolog clause of the following form:

(receiving arguments) :-
(H ead unification),
(bound check),
(executing Guard), !,
(decrementing bound),
(

scheduling Body).

The ‘bound check’ and the ‘decrementing bound’ parts are not generated if depth-
first scheduling is specified.

The last part, ‘scheduling Body’, does the following things.

(1) When no body goals exist (i.e., Body is ‘true’), the first goal in the continuation
is called.

(2) When just one body goal exists, that goal is called with the same continuation
that the current clause has received.
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gsort([Pivot|Xs],Y¥s0,Ys2) :-
part(Xs?,Pivot,Small,Large),
gsort(Small?,¥sO, [Pivot|Ys1]),
gsort(Large?,Ys1,Ys2).

gsort([],Ys,Ys).

part ([X|Xs],Pivot,Small, [X|Largel)

part(Xs?,Pivot,Small,Large) .

part ([X|Xs],Pivot, [X|Smalll,Large)

part(Xs?,Pivot,Small,Large) .
part([1,_,01,01).

% YsO0-Ys2: d-list

% Ys-Ys: empty d-list
:— Pivot < X |
:— Pivot >= X |

(a) Concurrent Prolog source program

:-fastcode.
:-public gsort/8.
:-mode gsort(?,7,7, +,7,—,+,+).
gsort (Argl,Ys0,Ys2, Bold,H,T,Flag,BO)
ulist(Argl,Pivot,Xs),
Bold > O, !,
Bnew is Bold-1,
part(Xs?,Pivot,Small,Large,
Bnew,
[$(gsort(Small?,Ys0, [Pivot|Ys1],
Bnew,H1,T1,Flagl,B0),
H1,T1,Flagl ),
$(gsort(Large?,Ys1,Ys2,
Bnew,H2,T2,Flag2,B0),
H2,T2,Flag2 )
| HI,
T,nd,BO).

gsort(Argl,Ys0,Ys1, Bold,H,T,Flag,BO)
unil (Argl), unify(Ys0,¥Ys1),
Bold > O, !,
H=[$(Goal,H1,T,nd) |H1],
incore(Goal).

% Compiler option

% Argl=[Pivot|Xs]
% Bound check

% Decrement bound

% Push 1st gsort

% and 2nd gsort
% to the top of the continuation

% YsO=Ys1, Argi=[]

% Bound check

% Pop the first goal, give

% appropriate continuation and

% deadlock flag, and schedule it

(b) Object program in DEC-10 Prolog (continued on the next page)

Fig. 6.5. Compiling Concurret Prolog into Prolog
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gsort (Argl,Arg2,Arg3, % Suspension processing

Bold,
[$(Goal,H1,T1,Flag) |H1], % Pop the first goal,
[$(gsort(Argl,Arg2,Arg3,
BO,H2,T2,Flag2,B0), % push qsort itself,
H2,T2,Flag2 )|T1],
Flag,B0) :- incore(Goal). % and call it

:-public part/9.
:~mode part(?’?’?:?: +:?:_:+:+)-
part(Argl,Pivot,Small,Arg4, Bold,H,T,Flag,BO) :-

ulist(Argl,X1,Xs), % Argl=[X1]|Xs]
ulist(Arg4,X2,Large), % Arg4=[X2|Largel
unify(X1,X2), % X1=X2

Bold > 0, % Bound check
cpwait(Pivot,Pivot_w), % Wait for Pivot
cpwait (X1,X1_w), % and X1

Pivot_w < Xi1_w, !, % and compare them
Bnew is Bold-1, % Decrement bound

part(Xs?,Pivot,Small,Large, Bnew,H,T,nd,BO).

part(Argl,Pivot,Arg3,Large, Bold,H,T,Flag,BO) :-
ulist(Argl,X1,Xs), ulist(Arg3,X2,Small),
unify(X1,X2), Bold > O,
cpwait(Pivot,Pivot_w), cpwait(X1,X1_w),
Pivot_w >= X1_w, !, Bnew is Bold-1,
part(Xs?,Pivot,Small,Large, Bnew,H,T,nd,BO).

part(Argl,_,Arg3,Arg4, Bold,H,T,Flag,BO) :-

unil (Argl), unil(Arg3), % Argi=[], Arg3=[],
unil (Argd), % Argd=[]
Bold > 0, !,

H=[$(Goal,H1,T,nd) |H1], incore(Goal).

part (Argl,Arg2,Arg3,Arg4,
Bold, [$(Goal,H1,T1,Flag)|H1],
[$(part (Argl,Arg2,Arg3,Arg4,
BO,H2,T2,Flag2,B0),
H2,T2,Flag2 )|T1],
Flag,BO) :- incore(Goal).

(b) Object program in DEC-10 Prolog (continued from the previous page)

Fig. 6.5. Compiling Concurret Prolog into Prolog (continued)
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gsort([Pivot|Xs], YsO, Ys2) :- true
part(Xs, Pivot, Small, Large),
gsort(Small, YsO, [Pivot|Y¥si]),
gsort(Large, Ysl, Ys2).

gsort([], YsO, Ys1) :- true | YsO = Ysi.

part([X|Xs], Pivot, Small, Large) :- Pivot < X |
Large = [X|L1], part(Xs, Pivot, Small, L1).

part([X|Xs], Pivot, Small, Large) :- Pivot >= X |
Small = [X|S1], part(Xs, Pivot, S1, Large).

part([], _, Small, Large) :- true |
Small = [], Large = [].

(a) GHC source program

:—-fastcode.

:-public gsort/8.

:-mode gsort(?,7,7, +,7,—,+,+).

gsort(Argl,Ys0,Ys2, Bold,H,T,Flag,B0) :-
nonvar (Argl), ulist(Argl,Pivot,Xs),

Bold > 0, !, Bnew is Bold-1,
part(Xs,Pivot,Small,Large,
Bnew,

[$(gsort(Small,YsO, [Pivot|Ysi],
Bnew,H1,T1,Flagl,B0),
H1,T1,Flagl ),
$(gsort(Large,Ys1,Ys2,
Bnew,H2,T2,Flag2,B0),
H2,T2,Flag2 )
| HI,
T, nd, BO).

gsort(Argl,Ys0,Ys1, Bold,H,T,Flag,B0) :-
nonvar (Argl), unil(Argl),
Bold > 0,
YsO = Ysi,!,
H = [$(Goal,H1,T,nd) |H1], incore(Goal).

(b) Object program in DEC-10 Prolog (continued on the next page)

Fig. 6.6. Compiling GHC into Prolog
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gsort (Argl,Arg2,Arg3,
Bold, [$(Goal,H1,T1,Flag) | H1],
[$(gsort(Argl,Arg2,Arg3,
BO,H2,T2,Flag2,B0),
H2,T2,Flag2 ) | Til,
Flag,BO) :- incore(Goal).

:-public part/9.
:-mode part(?,7,7,7, +,7,-,+,+).
part(Argl,Pivot,Small,Large, Bold,H,T,Flag,B0) :-
nonvar (Argl), ulist(Argl,X,Xs),
Bold > 0,
nonvar (Pivot), nonvar(X), Pivot < X,
Large = [X|L1], !,
Bnew is Bold-1,
part(Xs,Pivot,Small,L1, Bnew,H,T,nd,BO).

part(Argl,Pivot,Small,Large, Bold,H,T,Flag,B0) :-
nonvar (Argl), ulist(Argl,X,Xs),
Bold > 0,
nonvar (Pivot), nonvar(X), Pirot >= X,
Small = [X|S1], !,
Bnew is Bold-1,
part(Xs,Pivot,S1,Large, Bnew,H,T,nd,BO).

part(Argl,_,Small,Large, Bold,H,T,H,I) :-
nonvar (Argl), unil(Argl),
Bold > O,
Small = [], Large = [1, !,
H = [$(Goal,H1,T,nd) | H1], incore(Goal).

part (Argl,Arg2,Arg3,Arg4,
Bold, [$(Goal,H1,T1,Flag) | Hil,
[$(part (Argl,Arg2,Arg3,Arg4,
BO,H2,T2,Flag2,B0),
H2,T2,Flag2 ) | Til,
Flag,B0) :- incore(Goal).

(b) Object program in DEC-10 Prolog (continued from the previous page)

Fig. 6.6. Compiling GHC into Prolog (continued)
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3) When two or more body goals exist, the second and the subsequent goals are
y g ) q g
put at the front of the continuation, and the first goal is called with the modified
continuation.

Upon these calls, the fourth additional argument, the deadlock flag, is set to ‘nd’
(for ‘no deadlock’).

The GHC compiler gives special treatment to unification goals in a clause
body. Since we disallow nested guards, such unification goals never suspend. So
we need not schedule them normally but we can execute them immediately upon
commitment. Thus the treatment of body goals described above applies only to
those other than unification.

Of the above three cases, only the first case needs an indirect call; in the other
cases, at least one of the body goals is directly called as long as the current bound
value is not zero.

Avoiding indirect calls is important for efficiency. A major application of
Concurrent Prolog and GHC is to describe a distributed system in which con-
stituent processes, represented as conjunctive goals, communicate with one another
using shared variables as streams. In this case, most of the reductions use tail-
recursive clauses having just one body goal except for output unification. Our
compilers translate such clauses into tail-recursive Prolog clauses. Since advanced
Prolog implementations realize tail-recursion optimization which avoids the growth
of the local stack and re-utilizes information left on the stack, a tail-recursive
Concurrent Prolog/GHC program is expected to have good properties. Assume
that 100-bounded depth-first scheduling is used and that much less than 1% of
reductions use clauses with no body goals other than unification. Then, 99% of
predicate calls are done by efficient direct scheduling.

The clause for handling suspension is included in the postlude part of each
predicate. It pushes the current goal at the rear of the given continuation, and calls
its first goal.

Deadlock and termination are detected by a cycle marker: a call to the system
predicate ‘$END’ (Figure 6.7). This predicate receives a continuation and a deadlock
flag, and simply terminates if the given continuation is empty. If the continuation
is not empty and the deadlock flag has been set to ‘nd’ since the last call of ‘$END’,
it enqueues itself, resets the deadlock flag to ‘d’ (for ‘deadlock’), and calls the first
goal in the continuation. Otherwise, the predicate ‘$END’ fails. The goal ‘$END’
is given as the continuation of an initial goal which is input from the terminal.

6.2.3.2. Unification

In Concurrent Prolog and GHC, unification of two terms may suspend even
when they are unifiable in the ordinary sense. Therefore, its object code in Prolog
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:~ public ’$END’/3.

P$END’ ([1,_,_) - !'. % Succeeds if no goals remain
*$END’ ([$(Goal,H1,T1,d) |H1], % Pop the first goal
[$(’$END’ (H2,T2,Dnd2), % and push itself
H2,T2,Dnd2) |T1],
nd) :- % If deadlock flag is ‘nd’
incore(Goal). % then call the popped goal

Fig. 6.7. System predicate for the detecion
of deadlock and termination

:— public ulist/3. :- mode ulist(?,-,-).
ulist([HI|T],H,T) :- !'.
ulist(X?,H,T) :- nonvar(X), ulist(X,H,T).

:— public unil/1. :- mode unil(?).
unil([]) :- !.

unil (X?) :- nonvar(X), unil(X).

:— public cpwait/2. :- mode cpwait(?,7).
cpwait (X?7,Y) :- !, nonvar(X), cpwait(X,Y).
% Here, 1st arg s a non-variable.

cpwait (X,X).

(a) for Concurrent Prolog

:= public ulist/3. :- mode ulist(+,-,-).
ulist([HIT], H, T).

:— public unil/1. :- mode unil(+).
unil ([]1).

(b) for GHC

Fig. 6.8. Some system predicates for unification and synchronization
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must realize the suspension mechanism. The Concurrent Prolog compiler represents
read-only annotations by means of a function symbol ‘?’, which is appropriately
interpreted in the unification routines. The GHC compiler realizes suspension by
using the extralogical predicates ‘nonvar’ and ‘==’.

The suspension mechanism makes unification a little bit heavier. However,
for unification between a goal and a clause head, specialized unification procedures
can be used depending on the form of the head, because the form of the head
can be analyzed statically. The use of specialized unification procedures diminishes
run-time overhead.

The code for head unification is expanded at the beginning of each clause
body in the form of a sequence of goals. Assume that one of the head arguments
of some source clause is a list [T} 175], where T} and T, are some terms. The
corresponding Prolog code first tries to unify the goal argument X with the term
[Car|Cdr] where Car and Cdr are variables, and if successful, executes the goals
for processing its C'ar and C'dr according to the forms of T and T5, which may have
been expanded also. This idea is similar to the one employed in the DEC-10 Prolog
compiler (Warren [1977]): The only difference is that our compiler can expand
a unification procedure to any level, as Warren’s new abstract Prolog machine
architecture (Warren [1983]) enables.

Note that some unification procedures cannot be expanded at all: In the case
of Concurrent Prolog, general unification procedure must be used for a variable
which occurs more than once in a head (e.g., the variable Ys in ‘gsort’ in Figure
6.5). In the case of GHC, two or more occurrences of a variable in a clause head
are ‘compared literally’ by the Prolog predicate ‘==" not to instantiate the caller.

Figure 6.8 shows the definitions of some unification and synchronization proce-
dures used in the program in Figures 6.5 and 6.6. The ‘cpwait’ predicate is used for
interfacing between Concurrent Prolog and Prolog. Note that the object code for
unification fails upon suspension: Suspension processing is done by the last clause
of each predicate.

Mode declaration facilities enable us to declare one of the following three modes
for each argument of a predicate.

(1) Index mode (‘+’): tells the compiler to generate a code that takes advantage
of the clause indexing feature of the underlying Prolog implementation. The
object code of a predicate having this mode has a two-stage structure: the
first stage for waiting for the arguments of this mode, and the second stage for
clause selection. This mode is effective when there are lots of clauses.

(2) Normal mode (‘?’): specifies that the argument be processed in the ordinary
way.

(3) Output mode (‘-’): declares that the goal argument is always an uninstantiated
non-read-only variable. This mode is effective only in the Concurrent Prolog
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compiler. For arguments of the output mode, implicit head unification of Prolog
is used instead of explicit unification procedures.

Figure 6.9 shows how object codes generated by the Concurrent Prolog compiler
are affected by a mode declaration.

6.2.4. Performance

Detailed performance evaluation was made for the Concurrent Prolog compiler
rather than the GHC compiler to make a reasonable comparison between the com-
piler and the original interpreter. As for the GHC compiler, we only note that
compiled GHC programs ran almost as fast as the comparable Concurrent Prolog
programs with mode declarations.

Table 6.1 shows some benchmark results. For each program, we obtained four
timing data from the Concurrent Prolog compiler: with bounded depth-first/depth-
first scheduling and with/without mode declarations. The benchmark programs
were timed also on the original interpreter under breadth-first scheduling. Moreover,
Prolog programs having the same input-output relations as the benchmark programs
were written and timed. The Prolog system we used is DEC-10 Prolog on DEC2060.

Table 6.1 shows that our object codes ran 12 to 220 times as fast as the original
interpreter. Moreover, they ran 2.7 to 4.4 times as fast as the comparable Prolog
programs processed by the DEC-10 Prolog interpreter. They were, of course, slower
than the comparable Prolog programs processed by the compiler, but the slowdown
was 1/2.7 to 1/5.3, which we think is quite reasonable.

The ‘append’ program ran at more than 11.5kRPS (kilo Reductions Per Second:
equivalent to kLIPS if there are no guards).

Mode declaration was effective for all the benchmark programs. The speedup
was 19% to 84%. As for the benchmark programs, the source of improvement is
the declaration of the output mode. The speedup brought by changing bounded
depth-first scheduling to depth-first scheduling was 27% or less.

The third program that performs bounded-buffer communication was ineffi-
cient, because process switching took place very often. We can see from Table 6.1
that we can make this program 2.75 times faster only by changing the buffer size
to 10.

The column showing the number of suspensions indicates that the bounded
depth-first scheduling provides good behavior except for bounded buffer programs.
The ill behavior of the one-bounded buffer program is inevitable, because that
behavior is just what the program has explicitly specified.

6.2.5. History and Possible Extensions

The Concurrent Prolog system explained above is the second version at ICOT.
The first version, written by Chikayama [unpublished], optimized head unification,
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append([A|X],Y,[AlZ]) :- append(X,Y,Z).
append([],Y,Y).

:- mode append2(+,7,-).
append2([A|X],Y,[AlZ]) :- append2(X,Y,Z).
append2([],Y,Y).

(a) Concurrent Prolog source program

:—fastcode.

:-public append/8.

:-mode append(?,7,7, +,7,-,+,+).

append(Argl,Y,Arg3, Bold,H,T,Flag,B0) :-
ulist(Argl,A1,X), ulist(Arg3,A2,Z),

unify(A1,A2), % Head unification
Bold>0, !, % Bound check
Bnew is Bold-1, % and updating

append(X,Y,Z, Bnew,H,T,nd,BO). % Tail recursion

append(Argl,Y1,Y2, Bold,H,T,Flag,B0) :-

unil (Argl), unify(Y1,Y2), % Head unification
Bold>0, !, % Bound check
H=[$(Goal,H1,T,nd) |H1], % Pop the next goal
incore(Goal). % and call it

append (Argl,Arg2,Arg3,
Bold, [$(Goal,H1,T1,Flag)|H1],
[$(append (Argl,Arg2,Arg3, BO,H2,T2,Flag2,B0),
H2,T2,Flag2 )|T1],
Flag,B0) :- incore(Goal). % Suspension processing

(b) Object program in DEC-10 Prolog (continued on the next page)

Fig. 6.9. The effect of mode declaration
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:-public append2/8.
:-mode append2(?,?7,7, +,7,-,+,+).
append2(Argl,Arg2,Arg3, Bold,H,T,Flag,B0) :-
cpwait(Argl,Argl_w), % Wait for Argl
Bold > 0, !, % Bound check
’$$$append2’ (Argl_w,Arg2,Arg3,
Bold,H,T,Flag,B0). % Clause selection

append2(Argl,Arg2,Arg3,
Bold, [$(Goal,H1,T1,Flag)|H1],
[$(append2(Arg1,Arg2,Arg3, B0,H2,T2,Flag2,B0),
H2,T2,Flag2 )|T1],
Flag,B0O) :- incore(Goal). % Suspension processing

’$$$append2’ ([AIX],Y, [AlZ], % Unification for Argl
% and Arg3 is embedded
Bold,H,T,Flag,B0) :- !,
Bnew is Bold-1, % Bound updating
append2(X,Y,Z, Bnew,H,T,nd,B0). 7% Tail recursion

»$$$append2’ ([1,Y,Y, % Unification for Argl
% and Arg3 is embedded
Bold,H,T,Flag,BO) =,
H=[$(Goal,H1,T,nd) |H1], % Pop the next goal
incore(Goal). % and call it

*$$%append2’ (Argl,Arg2,Arg3,
Bold, [$(Goal,H1,T1,Flag)|H1],
[$(’$$%append2’ (Argl,Arg2,Arg3,
BO,H2,T2,Flag2,B0),
H2,T2,Flag2 )|T1],
Flag,BO) :- incore(Goal). % Suspension processing

(b) Object program in DEC-10 Prolog (continued from the previous page)

Fig. 6.9. The effect of mode declaration (continued)

— 126 —



Table 6.1. Concurrent Prolog Benchmark on DEC2060

Program Proces-  Reduc-  Suspen- Time(*2)/RPS(*3)

sing tions sions (compiler (compiler (interpreter)

(*1) without mode) with mode)
List concatena- B 502 0 — — 2313 / 217
tion (Append) BD100 502 0 88.7/ 5660 54.8/ 9160 —
(50040 D 502 0 79.0/ 6350 43.0/11700 —
elements) P 15.8/31800 11.9/42200 188 /2670
Stream merge B 202 0 — — 1005 / 201
(1004100 BD100 202 0 42.9/ 4710 28.7/ 7040 —
elements) D 202 0 38.4/ 5260 23.6/ 8560 —

P 8.3/24300 8.0/25300 73.7/2740
Bounded buffer B 204 0 — — 1473 / 138
(size=1)(*4) BD100 204 200 147 / 1390 121 / 1690 .

D 204 200 143 / 1430 119 / 1710 —
Bounded buffer B 204 0 — — 1470 / 139
(size=10)(*4) BD100 204 20 60.2/ 3390  47.6/ 4290 -

D 204 20 56.3/ 3620 43.3/ 4710 —
Primes B 2778 8445 — — 80521 / 35
(2 to 300) BD100 2778 73 966 / 2880 769 / 3610 -
(without output) D 2778 0 836 / 3140 689 / 4030 —

P 216 /12900 188 /14800 2969 / 936
Quicksort B 378 2225 — — 20233 / 19
(50 elements) BD100 378 0 125 / 3020 96.5/ 3920 —

D 378 0 119 / 3180 91.3/ 4140 —

P 21.3/17700 17.3/21800 246 /1540

*1 B—breadth-first scheduling; BD100—bounded depth-first scheduling (bound=100);
D-—depth-first scheduling; P-—DEC-10 Prolog compiler (with ‘fastcode’ option)

and interpreter.

*2 In milliseconds. Overhead for timing has been excluded:
*3 RPS—mnumber of Reductions Per Second. An RPS value does not count reductions
in guards. RPS values of Prolog programs were calculated using the number of
reductions of the corresponding Concurrent Prolog programs.

*4 A Prolog counterpart does not exist.
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but it still employed a centralized scheduler predicate which managed the goal
queue. Therefore, the first version can be considered as a step from the original
interpreter towards the second version. Although less efficient, the first version
had an advantage that detailed trace information could be obtained more easily.
This reflects the fact that the degree of compilation was smaller compared with the
second version.

Before writing the second version, we made several mock-ups of object codes
for simple programs and tested them. Design of object codes must be made very
carefully because it is crucial for performance. A slight difference in object codes
may greatly affect the performance if the codes have been highly optimized. After
determining the object code format, it did not take much effort to write the compiler.

The GHC compiler was made by modifying the second version of the Concurrent
Prolog compiler. Due to the similarity of Concurrent Prolog and GHC, all we had to
do was to modify the code generator for guards and some runtime support routines
including unification.

The restriction of the GHC compiler that no user-defined goals are allowed in
a guard is not so severe as it might look, but it can be relaxed. There are two
possible approaches to allowing user-defined goals in a guard: a static approach
and a dynamic approach. In a static approach, one must analyze all user-defined
goals in guards to determine whether each piece of unification can suspend or not.
This approach is used in PARLOG for compile-time mode analysis (Clark and
Gregory [1984c]). A dynamic approach is used in Miyazaki’s compiler (Miyazaki
[1985b]). This compiler makes use of the fact that in DEC-10 Prolog, a newer global
variable has a larger address than older ones. This fact enables us to distinguish
non-writable variables in a caller from writable ones newly created in a guard by
using a ‘threshold’ address. Of course, it is inevitable that a dynamic approach
loses efficiency in exchange for flexibility.

6.2.6. Summary

We have implemented fast, portable compilers of Concurrent Prolog and GHC
on top of Prolog. If a Prolog system is available, one can immediately get started
with parallel logic programming.

Both Concurrent Prolog and GHC systems are less than 800 lines long. It took
only a few days to have the first working version of the Concurrent Prolog compiler.
Modifying the Concurrent Prolog system to make the GHC system took one and a
half days. In other methods, it would take much more efforts to make a system with
the same efficiency. It is well known that Prolog is a good tool for rapid prototyping
of another logic programming language, but all these facts show that an efficient
Prolog implementation is a good tool also for getting an efficient implementation of
another logic programming language rapidly.
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Chapter 7
EXHAUSTIVE SEARCH IN GHC

This chapter presents a technique for compiling a Horn-clause program intended
to be used for exhaustive search into a GHC (Guarded Horn Clauses) program. The
technique can be viewed also as a transformation technique for Prolog programs
which eliminates the ‘bagof’ primitive and non-determinate bindings. The class
of programs to which our technique is applicable is shown with a static checking
algorithm; it is nontrivial and could be extended. An experiment on a compiler-
based Prolog system showed that our compilation technique improved the efficiency
of exhaustive search by 6 times in the case of a permutation generator program.
This compilation technique is important also in that it exploits the AND-parallelism
of GHC for parallel search. The contents of this chapter is based on (Ueda [1985c]).

7.1. Motivations

We often use Horn-clause logic, or more specifically the language Prolog, to
obtain all solutions of some problem, that is, to obtain all answer substitutions for
the variables in a goal to be solved. In this framework, however, it is difficult to
collect the obtained solutions into a single environment to make further processing
such as counting the number of the solutions, comparing them, classifying them, and
so on. This is because these solutions correspond to different, independent paths
of a search tree. For this reason, many of Prolog implementations support system
predicates for creating a list of solutions of a goal given as an argument; examples are
‘setof’ and ‘bagof’ of DEC-10 Prolog. Naish [1985] made a survey of all-solutions
predicates in various Prolog systems. These system predicates, however, internally
use some extralogical features to record the obtained solutions. So it should be
an interesting question whether it is possible to do exhaustive search without such
primitives.

Another motivation is that we may sometimes wish to do exhaustive search in
GHC or other parallel logic programming languages which do not directly support
exhaustive search. In this case, parallelism inherent in GHC should be effectively
used for the search.

One possible way to achieve the above requirements is to write down a first-
order relation directly which states, for example, that “S is a list of all solutions of
the N-queens problem”. It is almost evident that such a relation can be described
within the framework of Horn-clause logic. However, in practice, it is much harder
to write it manually than to write a program which finds only one solution at a time.
A programming tool which automatically generates an exhaustive search program
could resolve this situation, and this is the way which we will pursue in this chapter.
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7.2. Outlines of the Method

Our method is to compile a Horn-clause program intended to be used for ex-
haustive search by means of backtracking or OR-parallelism into a GHC program
or a deterministic Prolog program which returns the same (multi-)set of solutions in
the form of a single list. Here, the word ‘deterministic’ means that all bindings given
to variables are determinate and never undone. Prolog programs in this subclass
are interesting from the viewpoint of implementation, since a trail stack need not
be prepared to execute them correctly. Furthermore, determinism in this sense has
a similarity with the semantical restriction which GHC imposed to Horn clauses to
make all activities done in a single environment. This similarity is reflected by the
fact that a transformed program can be interpreted both as a GHC program and
as a Prolog program by the slight change between the ‘|’ (commitment) operator
and the ‘!’ (cut) operator.

There are two possible views of this transformation technique. One is to regard
this as compilation from a Horn-clause program (with no concept of sequential-
ity) to a guarded-Horn-clause program. By compiling OR-parallelism into AND-
parallelism, we eliminate a multiple environment mechanism which is in general
necessary for parallel search since each path of a search tree would create its own
binding environment. The other view is to regard it as transformation of a Prolog
program. This transformation serves as simplification in the sense that the predicate
‘bagof’ and the unbinding mechanism can be eliminated. Moreover, this transfor-
mation may remarkably improve the efficiency of a search program, as we will see
later.

Our technique has another important meaning. By making search performed in
a single environment, it becomes possible to introduce a mechanism for ‘controlling’
the search. That is, our technique may provide a starting point for more intelligent
search.

A transformed program, viewed as a GHC program, emulates the OR-parallel
and AND-sequential execution of the original program. The original OR-parallelism
is compiled into AND-parallelism as stated above, and the sequential execution of
conjunctive goals is realized by passing a continuation around. The AND-parallelism
of GHC we use is a simple one, since two conjunctive goals solving different paths
of a search tree have no interaction except when solutions are collected.

A continuation is a data structure which represents remaining tasks to be done
before we get a solution. The notion of a continuation was effectively used also in
Concurrent Prolog and GHC compilers on top of Prolog (Section 6.2) to implement
a goal queue. The difference is that we use a stack instead of a queue here.

7.3. Previous Research

Implementation technique of exhaustive search in parallel logic programming
languages can be found in (Hirakawa, Chikayama and Furukawa [1984]) and (Clark
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and Gregory [1985c]). Their approach is to describe an interpreter of Horn-clause
programs in Concurrent Prolog or PARLOG, but the following problems could be
addressed to this approach:

(1) The interpreter approach loses efficiency.

(2) The multiple environment mechanism is implemented as a run-time creation of
variants (Section 2.1.2) of terms.

Problem (1) will not be serious, since it could be resolved by a partial evaluation
technique. Alternatively, we could directly write a compiler which corresponds to
the original interpreter without much difficulty, as we did in Section 6.1. On the
other hand, Problem (2) seems serious.

The reason why we need multiple environments is that different sets of unifiers
can be generated when we rewrite a goal in two or more ways by using different
program clauses at the same time (Section 3.3.1). Therefore, when we interpret
an exhaustive search program, we make a necessary number of variants of the cur-
rent set of goals and the partially determined solution prior to that simultaneous
derivation. The above interpreters made some optimization to reduce the amount
of variants to be created, but they did not avoid run-time creation of them.

However, run-time creation of variants is a time-sensitive operation. That
is, a goal for creating a variant, say ‘copy(77,7%)’, cannot be rewritten to the
conjunction of two goals “I1=T5, copy(75,7%)’. Hence the predicate ‘copy’ is
incompatible with the anti-substitutability of GHC (Section 4.7.2), and GHC cannot
give any reasonable semantics to it. In the framework of sequential Prolog also, the
predicate ‘copy’ should be considered extralogical, because it cannot be defined
without the extralogical predicate ‘var’ which checks if its argument is currently
an uninstantiated variable. The use of extralogical predicates should of course be
discouraged, since it introduces semantical complexity and it hinders description of
programming systems and support from them.

7.4. A Simple Example

To illustrate the difference between the previous method and ours, let us con-
sider the example of decomposing a list using the ‘append’ predicate:

:— append (U, v,[1,2,3]).
append([1l, Z,Z ). (7.4-1)
append ([A|X]1,Y,[AlZ] ) :- append(X,Y,Z). (7.4-2)

From the head of Clause (7.4-2), we get a partial solution U=[1]X]. Then we get
three instances for X, namely [1, [2], and [2,3], by recursive calls. However,
these three solutions cannot share the common prefix ‘[1]’ as long as the value of
a variable is represented by a reference pointer rather than by an association list,
and this is why we have to make variants of the partial solution [1[X].
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Our method, on the other hand, first rewrites Clause (7.4-2) as follows:
append (X2 Y,[AlZ] ) :- append(X,Y,Z), X2=[A|X]. (7.4-3)
The predicate ‘=" unifies its two arguments. It can be defined by a single unit clause:
X =X.

We assume that body goals are executed from left to right, following head unifi-
cation. Then, while Clause (7.4-2) generates answer substitutions in a top-down
manner, Clause (7.4-3) generates them in a bottom-up manner by combining ground
terms. The first output argument X2 remains uninstantiated until the first recur-
sive goal, which may fork because of the two candidate clauses, succeeds. Therefore,
we need not make variants of the partial solution upon the recursive call. Clause
(7.4-3) is no more tail-recursive, so we must instead push the remaining task, the
task of consing A with X to obtain X2, onto the stack representing a continuation.
However, since the variable A has a ground value, the information to be stacked can
be represented as a ground term and hence the continuation need not be copied
even when the ‘append’ goal forks.

Now we are prepared for the elimination of nondeterminism. Figure 7.1 shows
a GHC program which returns the result equivalent (up to the permutation of
solutions) to the following DEC-10 Prolog goal:

:= ..., bagof((X,Y), append(X,Y,Z), S), ...

The search corresponding to the two clauses of the original ‘append’ is performed
by the conjunctive goals ‘apl’ and ‘ap2’. Their arguments are as follows:
(i

the 1input (third) argument of the original program,

he i hird f th iginal

1) the continuation,

(- ) h . .
)
)

(iii) the head of the difference list of solutions, and
(iv
Since Clause (7.4-1) is a unit clause, the corresponding predicate ‘apl’ activates
the ‘remaining tasks’ by calling the predicate ‘cont’ for continuation processing.
At that time, two output results, [] and the input argument itself, are passed to
the continuation processing goal. The predicate ‘ap2’ activates the first recursive
goal with the information used by the second goal attached to the continuation in
case the input argument has the form [A|Z]. If the input argument is not of the
form [AlZ], the unification of the input argument fails and the empty difference
list is returned immediately.

its tail.

The predicate ‘cont’ does continuation processing. If the continuation has
the form ‘L1’ (A,Cont), it pushes A in front of the output X and calls ‘cont’ to
process the rest of the continuation, Cont. If the continuation has the form ‘LO’,
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Calling form: - ..., ap(Z,’L0’,S,[1),

ap(Z,Cont,S0,52) :- true | api1(Z,Cont,S0,S1), ap2(Z,Cont,S1,S52).
ap1(Z,Cont,S0,S1) :- true | cont(Cont,[],Z,50,S1).

ap2([A|Z],Cont,S0,S1) :- true | ap(Z,’L1’(A,Cont),S0,S1).
ap2(Z, _, S0,S1) :- otherwise | S0=S1.

cont(’L1’(A,Cont),X,Y,S80,S1) :- true | cont(Cont,[A|X],Y,S0,S1).
cont (’LO’, X,Y,80,S1) :- true | SO=[(X,Y)|S1].

Fig. 7.1. List Decomposition Program
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it inserts the two outputs it received into the difference list. The function symbols
which construct the continuation can be regarded as indicating the locations of the
original program: ‘L0’ indicates the end of the top-level goal and ‘L1’ indicates
the end of the recursive call of Clause (7.4-3). Interestingly, the predicate ‘cont’ is
very similar to an efficient (non-naive) list reversal program, and the continuation
in this example is essentially a list which represents the first part of each solution
(which is a pair of lists) in a reversed form. Different solutions to be collected
are created by different calls of ‘cont’ which reverse different substructures of the
shared continuation.

The program in Figure 7.1 collects the solutions from ‘apl’ and ‘ap2’ by the
concatenation of difference lists, but this is not a fair way of collection. For example,
if the first clause of some predicate produced infinite number of solutions, we could
not see any solutions from the second clause. When we need a fair collection, we
must collect solutions by using a ‘merge’ predicate implemented fair.

We can interpret Figure 7.1 also as a Prolog program, provided that the ‘|’
operators are replaced by the ‘!’ operators, that the ‘otherwise’ goal in the second
clause of ‘ap2’ is deleted, and that the second clause of ‘ap2’ is guaranteed to be
the last clause of ‘ap2’.

7.5. General Transformation Procedure

This section first presents the class of Horn-clause programs to which the tech-
nique as illustrated in Section 7.4 can be easily and mechanically applied, and
then briefly shows the transformation procedure. We use the permutation program
(Figure 7.2) as an example.

First of all, we show the class of Horn-clause programs to which our transfor-
mation technique is applicable. A program in this class must enjoy the following
property when the body goals in each clause are executed from left to right, follow-
ing head unification:

e The arguments of every goal appearing in a program can be classified into
input arguments and output arguments. When some goal is called, its input
arguments must have been instantiated to ground terms, and then the goal
must instantiate its output arguments to ground terms when it succeeds.

Although the above property may look restrictive at a glance, most programs which
do not use the notion of ‘multiple writers’ (see Section 7.6) or the notion of a differ-
ence list (which is an incomplete data structure) will enjoy this property. Programs
which do use multiple writers require pre-transformation as described in Section 7.6.
On the other hand, programs which make use of difference lists could be handled
by extending the above notion of input and output, as long as they allow static
dataflow analysis. This conjecture is based on the observation that when we write
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perm([], 1.
perm([H|T], [A|IP]) :- del([H|T], A, L), perm(L, P).

del([HIT], H, T).
del([HIT], L, [HIT2]) :- del(T, L, T2).

Fig. 7.2. Permutation Program

Given Declaration: perm(+, -). (‘+: input, ‘=": output)
+ -

perm( [], 1.
+ - + - - + -

perm([H|T], [AIP]) :- del([H|T], A, L), perm(L, P).
+ —_ —_

del([H|T], H, ).
+ - - + - -

del([HIT], L, [H|T2]) :- del(T, L, T2).

Fig. 7.3. Mode Analysis of the Permutation Program
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a Prolog program which handles difference lists, we usually fully recognize how
uninstantiated variables appear in the data structures.

One way to give input/output modes to a program would be to make the pro-
grammer declare them for every goal arguments appearing in the program. However,
a more realistic way will be to make the programmer declare the mode of (the argu-
ments of) the top-level goal only and to ‘infer’ the modes of other goals according
to the following rules:

e Moding Policy for a Single Goal

(a) Arguments which have been instantiated to ground terms upon call are re-
garded as input arguments (though they could be classified otherwise).

(b) All the other arguments are regarded as output arguments.

The mode inference and the check whether the program belongs to the above
transformable class can be done in a simple static analysis. We must perform
the following analysis for each clause and for each mode in which the predicate
containing that clause may be called:

e Mode Analysis of a Single Program Clause
(1) Mark all the variables appearing in the input head arguments as ground.
(2) While there is a body goal yet to be analyzed, do the following repeatedly:

(i) Determine the mode of the next body goal according to the above moding
policy for a single goal. Here, those terms which are composed only of
variables marked as ground and function symbols, and only those, are
regarded as ground terms.

i1) Then mark all the variables appearing in the output arguments of that
PP g p g
goal as ground.

(3) Check if the variables appearing in the output head arguments are all marked
as ground. If the check succeeds, terminate the analysis of this clause with
success; otherwise report failure.

Initially, only the modes of top-level goals are known; possible modes of other
goals are incrementally obtained during the above analysis. Therefore, the whole
algorithm of the mode analysis should be as follows. In the following, S denotes a
set of ‘moded’ predicates. A moded predicate is a predicate with a mode in which
it is called; different modes of a predicate correspond to different moded predicates.

e Mode Analysis of an Entire Program

(A) Let S be a set of the moded predicates whose calls appear in the (declared)
top-level goal. Mark those predicates as unanalyzed.
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(B) Repeatedly do the following until no unanalyzed predicate remains in S. That
is, take an unanalyzed predicate from S, unmark it, and analyze all its clauses
using the above algorithm, adding to S with the mark unanalyzed all moded
predicates whose calls are newly found during the execution of Step (2) .

Figure 7.3 shows the analyzed permutation program. It is easy to prove, by
induction on the number of steps of resolution, that a successfully analyzed program
instantiates the output arguments of each goal to ground terms upon successful
termination, provided ground terms are given to the input arguments.

A successfully analyzed program is then transformed according to the following
steps:

(1) If there is any predicate to be called in two or more different modes, give a
unique predicate name for each mode.

(2) Rewrite each clause into the normal form.
(3) Transform each predicate in the program.

Step (1) removes multi-mode predicates. This transformation attaches the
concept of a mode to each predicate as well as to each predicate call.

Step (2) is made up of the following steps:

(2a) For each clause other than unit clauses, replace output head arguments 77, ...,
T,, by distinct fresh variables Vi,...,V,,, and place the goals V,=Ty,...,V,=T,
at the end of the clause.

(2b) For each goal G in the body of each clause, replace its output arguments
Ty,...,T, by distinct fresh variables Vi,...,V, and place the goals V;=T7, ...,
V,,=T,, immediately after G unless T1,...,T,, are already distinct variables not
appearing in the previous goals or the clause head.

The purpose of Step (2b) is to simplify output arguments in a clause head. It is clear
that a program which has passed the mode analysis and then has been rewritten
according to Steps (2a) and (2b) is still in the transformable class. Figure 7.4 shows
the normal form of the permutation program.

Now we will show the outline of Step (3), the main part of our transformation
method. Figure 7.5 shows the result applied to the permutation program of Figure
7.4. In the following, we indicate in braces what in the example of the permutation
program are mentioned by each term appearing in the explanation.

(a) The arguments of a transformed predicate are made up of
e the input arguments of the original predicate,

e the continuation, and
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perm([], 1.
perm([H|T],X) :- del([HIT],A,L), /*Lix/ perm(L,P), /*L2%/ X=[A|P].

del ([HIT],H,T).
del([H|T],X,Y) :- del(T,L,T2), /*L3*/ X=L, Y=[H|T2].

Fig. 7.4. Normal Form of the Permutation Program

<1> p(01, Cont,S0,S1) :- true | contp(Cont,[],S0,S1).
<2> p([H|T],Cont,S0,S1) :- true | d([H|T],’L1’(Cont),S0,S1).
<3> p(L, - S0,S1) :- otherwise | S0=S1.

<4> d4(L,Cont,S0,S82) :- true | d1(L,Cont,S0,S1), d2(L,Cont,S1,S2).

<6> di1([H|T],Cont,S0,S1) :- true | contd(Cont,H,T,S0,S1).
<6> di(L, - S0,S1) otherwise | S0=S1.

<7> d2([H|T],Cont,S0,S1) true | d(T,’L3’(H,Cont),S0,S1).
<8> d2(L, _, S0,S1) :- otherwise | S0=S1.

<9> contp(’L2’(A,Cont),P,S50,S1) :- true | contp(Cont,[A|P],S0,S1).
<10> contp(’LO’, P,S0,S1) :- true | SO=[P|S1].

<11> contd(’L3’(H,Cont),L,T2,50,S1) :- true |
contd(Cont,L, [H|T2],S0,S1).

<12> contd(’L1’(Cont), A, L,S0,S1) :- true |
p(L,’L2’ (A,Cont),S0,S1).

Fig. 7.5. Transformed Permutation Program
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e the head and the tail of the difference list for returning solutions.

Each transformed predicate is responsible for doing the task of the original
predicate, followed by the task represented by the continuation.

For a predicate {‘perm’} of which at most one clause can be used for reduc-
ing each goal, the transformed predicate consists of the transformed clauses
{<1>, <2>} of the original ones (See (i)). For a predicate {‘del’} of which
more than one clause may be applicable for reduction, we give a separate sub-
predicate name {‘d1’, ‘d2’} to each transformed clause {<5>, <7>}, and let the
transformed predicate {‘d’} call all these subpredicates and collect solutions.

The body of a clause {<1>, <5>} transformed from a unit clause calls a goal
for continuation processing {‘contp’, ‘contd’}. This goal is given as arguments
the output values {[1, (H,T)} returned by the original unit clause.

The body of a clause {<2>, <7>} transformed from a non-unit clause calls
the predicate {‘d’} corresponding to the first body goal {‘del’} of the original
clause (See (e) and (j)).

When calling a (transformed) predicate {e.g., ‘d’ in <7>} corresponding to the
i-th body goal G; {the recursive call of ‘del’} of some clause, we push the
label {’L3’} indicating the next goal G;; together with the input data {H}
used by the subsequent goals G;11,...,G, {X=L, Y=[H|T2]}. When calling a
predicate {‘p’} corresponding to the top-level goal {say ‘perm(L,X)’ where L
is some ground term}, we give as the initial value of the continuation the label
{’L0’} indicating the termination of refutation together with the data {none}
necessary for constructing a term to be collected {X}.

Predicates for continuation processing are composed of clauses {<9>, <10>,
<11>, <12>} each corresponding to the label pushed in Step (e). These clauses
are classified according to the predicates immediately before those labels and
are given separate predicate names {‘contp’, ‘contd’}.

Each clause {e.g., <12>} of a predicate for continuation processing makes input
data {L} for the next goal {perm(L,P)} indicated by the received label {‘L1°},
by using the information {none} stacked with the label and the output {A, L}
of the last goal. Then it calls a predicate {‘p’} corresponding to the next goal
(See (e) and (j)).

The clause {<10>} for processing the label {‘L0’} indicating termination gen-
erates a term to be collected {P} from the output {P} of the top-level goal and
the information {none} stacked with the label, and returns a difference list
having that term as a sole element.

For those transformed predicates {‘p’, ‘d1’, ‘d2’} which may fail in the unifi-
cation of the input arguments, backup clauses {<3>, <6>, <8>} are generated
which return empty difference lists when the unification fails.
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(j) In spite of the above rules, no transformed predicates are generated for ‘=" and
other system predicates; they are processed immediately ‘on the spot’, followed
by the next task {<9>, <11>}.

It is worth noting that in spite of our restriction, a transformed program can
handle some non-ground data structure correctly. That is, the portions of an input
data structure which are only passed around and never examined by unification
need not be ground terms. For example, when we execute the following goal,

:- p([A,B,C], ’LO’, S, []).
S will be correctly instantiated to a list of six permutations:

([A,B,C],[A,C,B], [B,A,C], [B,C,A], [C,A,B], [C,B,A]].

7.6. On the Class of Transformable Programs

For the technique described above to be useful from the practical point of
view, the transformable class of Horn-clause programs defined in Section 7.5 must
be large enough to express our problems naturally. The problem in this regard is
that we often make use of the notion of ‘multiple writers’. By ‘multiple writers’ we
mean two or more goals sharing some data structure and trying to instantiate it
cooperatively and/or competitively. In Prolog programming, such a data structure
is usually represented directly by a Prolog term and it is operated by the direct use
of Prolog unification; a typical example is the construction of the output data of a
parser program.

However, this programming technique has problems from the viewpoint of the
applicability of our transformation:

(1) Tt is generally impossible to analyze statically which part of the shared data
structure is instantiated by which goal.

(2) The shared data structure may not be instantiated fully to a ground term.

Item (2) is considered a problem also from a semantical point of view. When
extracting some information from the shared data structure generated by a search
program, we have to use the extralogical predicate ‘var’ to see whether some portion
of the data structure is left undetermined. One may argue that we need not use
the predicate ‘var’ if we analyze the data structure after making it ground, that
is, after instantiating its undetermined portions to some ground terms such as new
constant symbols. He may further argue that making a term ground never calls for
the predicate ‘var’ since we can accomplish this by trying to unify every subterm
of it with a new constant. However, then, the search program which generates a
non-ground result and the program to make it ground will be in the relationship
of multiple writers, and the latter program should never start before the former
program has finished because the latter program must have a lower priority with
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respect to instantiation of the shared data structure. This means we have to use
the concept of sequentiality or priority between conjunctive goals, both of which
are concepts outside pure Horn-clause logic.

Anyway, we must make some pre-transformation to such a Horn-clause pro-
gram in order to apply our transformation technique. That is, we must change
the representation of the shared data structure to a ground-term representation—a
list of binding information generated by each writer. Each writer must receive the
current list of binding information and return a new one as a separate argument.
When a writer is to add some binding information, it must check the consistency of
the current and the new information to be added. This checking could be done by
trying to construct the original representation from scratch each time, but it could
be done more efficiently by adopting an appropriate data structure (possibly other
than a list of bindings) for the binding information.

Comparing the original and the proposed implementation schemes of multiple
writers from a practical point of view, the proposed scheme is apparently disad-
vantageous in the ease of programming. However, the difference does not lie in the
specification of the abstract data but only in the ease of its implementation, which
should not be so essential a problem since accumulation of programming techniques
and program libraries should alleviate the difficulty.

Efficiency is another point on which comparison should be made. Although the
original representation is suitable for the execution using backtracking, it requires
a multiple environment mechanism for OR-parallel execution, which may cause
additional complexity and overhead (Ciepielewski and Haridi [1983]; Ciepielewski
[1984]). The proposed pre-transformation may make the consistency checking some-
what expensive, but will make parallel execution much easier because no multiple
environment mechanism is necessary.

7.7. Performance Evaluation

Table 7.1 compares the performance of original and transformed programs. The
programs measured are those described above, and an N-queens program with N
being 5, 6, 7 and 8. The N-queens program we used was in the transformable class
shown in Section 7.5.

All programs were measured using DEC-10 Prolog on DEC2065. For each
original program, the execution time of exhaustive search (by forced backtracking)
without any collection of solutions was measured as well as the execution time
by the ‘bagof’ primitive. The ‘setof’ primitive was not considered because the
sorting of solutions was inessential for us. Each program was measured after possible
simplification which took advantage of the fact that Prolog checks candidate clauses
sequentially.

As Table 7.1 shows, the proposed program transformation improved the effi-
ciency of exhaustive search by 6 times for the permutation program and by more
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Table 7.1. Performance of Exhaustive Search Programs (in msec.)

Program Original Original  Transformed Number Of
(‘bagof’) (search only) Solutions

List Decomposition 836 4 27 51

(50 elements)

Permutation Genera- 354 34 57 120

tion (5 elements)

5-Queens 45 20 28 10

6-Queens 90 75 106 4

7-Queens 441 325 446 40

8-Queens 1796 1484 1964 92
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than 30 times for the list decomposition program ‘append’. This remarkable speedup
was brought about by specializing the task of collecting solutions to fit within the
framework of Horn-clause logic, while the ‘bagof’ primitive uses a extralogical fea-
ture similar to ‘assert’ which an optimizing compiler cannot help. A program such
as N-queens, which has only a small number of solutions compared with its search
space, cannot therefore expect remarkable speedup; the transformed N-queens pro-
gram got slightly slower except for the case of 5-queens. After some manual opti-
mization, however, the transformed 8-queens program surpassed the original ‘bagof’
version.

Another important point to note is that in the case of 8-queens, the transformed
program was only by 25% slower than the original program which does not collect
solutions and which makes use of the dedicated mechanism for search problems:
automatic backtracking. This suggests that the transformed program could not be
improved very much without changing the search algorithm.

7.8. Summary and Future Works

We have described a method of compiling a Horn-clause program for exhaustive
search into a GHC program or a deterministic Prolog program. Although not stated
above, the method using the concept of a continuation can be applied also to the
case where only one solution is required. Our method also provides the possibility
of introducing control into search, since all activities are made to be performed in
a single environment.

We restricted the class of Horn-clause programs to which our method is appli-
cable. However, this class is never trivial and it is expected that we should not have
so much difficulty in writing a program within this class or its natural extension.
Rather, we believe that it is important from a practical point of view to show the
class of Horn-clause programs which can be transformed without loss of efficiency
and without resort to extralogical predicates.

The loss of performance by not using such dedicated mechanisms as automatic
backtracking was small. Conversely, we found that our technique may greatly im-
prove the efficiency of exhaustive search that has been done by using the ‘bagof’
primitive.

The proposed transformation eases parallel search in that it eliminates the
need of multiple environments, but it never eliminates other problems on resource
management. Resource management is still an important problem for realizing
parallel search. Therefore, our results need not and should not be interpreted as
reducing the significance of OR-parallel Prolog machines: Specialized hardware can
always perform better for a special class of programs. While our purpose was
primarily to examine the possibility of efficient search on a general-purpose parallel
machine, we do expect also that our technique will be utilized for improving the
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efficiency of OR-parallel Prolog machines. Comparison of these two approaches
should be an interesting research in the near future.
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Chapter 8
CONCLUSIONS AND FUTURE WORKS

8.1. Contributions and Implications

The main contribution of this thesis is that it has presented a simple, basic
framework of a programming language in which we can describe programs inter-
acting with outside worlds. The framework is based on logic programming, but
we made nontrivial extensions to make it a programming language. Any practi-
cal programming language must have some means to interact with outside worlds.
The original logic programming framework regards an answer substitution or a set
of answer substitutions from all possible refutations as the result of computation.
However, a set of answer substitutions is a meta-level concept which is obtained
by observing the proof. On the other hand, input and output of GHC are done
by participating the proof. I/O processes, treated completely within the relational
framework, can be viewed as modeling the outside worlds. Thus the framework
of GHC is suitable for treating both computers and their surroundings uniformly;
we can interchangeably use a human process and an automated process to perform
the same task. There are many other good reasons to do without meta-level con-
cepts. Absence of meta-level concepts keeps the language and the underlying theory
simple. The simplicity may lead to efficient implementation also.

Including outside worlds in a uniform framework naturally called for paral-
lelism, regardless of whether the computer is parallel or sequential. It also called
for the notion of determinate bindings and causality among bindings. On the other
hand, it did not call for sequentiality as in Prolog. The design of GHC reflects all
these considerations.

Although we amended the original framework of logic programming, the frame-
work greatly contributed to the simplicity of the resulting language. In particular, it
enabled us to introduce an elegant notion of information flow and synchronization.
It is hoped that the simplicity and the generality of GHC will contribute much to
the future research on parallel programming and parallel programming languages.

However, one may feel still uneasy about the practical aspects of GHC, and it
was actually the case. We had to steadily remove the anxiety, and Chapters 6 and 7
addressed three important issues: Communication in a large network of processes,
efficient implementation on a sequential machine, and facilities for exhaustive search
which were once discarded.

The results of Chapters 6 and 7 remind us of the general principle that a
program need not be executed in a way it appears to specify. In any programming
languages, what a program specifies is ultimately nothing more than an input-
output relation. It never suggests how the result must be computed, though it
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may suggest how it can be computed. Chapters 6 and 7 show how compilation is
important for programming languages which are not machine-oriented.

A compilation technology serves to raise the level of a programming language
with minimum loss of efficiency. Of course, this enlarges the semantic gap between
the language and a target machine as long as the computer architecture remains
the same. The correctness of a compiler may become harder to prove. However, a
compiler must be made only once, and also its correctness must be proved only once.
After that, the description and the verification of all user programs are simplified.
This is the very benefit of a higher-level language.

8.2. Applications of GHC

GHC is a general-purpose language; it is intended to be used for any appli-
cations. Application programs written so far include a formula manipulation pro-
gram, a window system, and a hardware simulator. In addition, many programs
written in Concurrent Prolog and PARLOG can be easily translated into GHC; see
Hellerstein and Shapiro [1984], Broda and Gregory [1984], Edelman and Shapiro
[1984], Gregory, Neely and Ringwood [1985] and Matsumoto [1986]. Takeuchi [1986]
wrote an algorithmic debugger of GHC in GHC (see Section 8.3.3). As shown in
Chapter 7, Ueda [1985¢c] used GHC as a target language of exhaustive search pro-
grams written in ordinary Horn clauses. However, much more programs must be
written before GHC is widely accepted as a practical programming language. This
process is important also for identifying necessary syntactic constructs to be in-
corporated into a user language (Section 8.3.2), as well as for developing efficient
implementations.

Real-time systems form an important application area. However, the compu-
tational model provided by GHC is too liberal to permit description of real-time
systems; for example, it allows delay in communication using shared variables. To
correctly handle real time in GHC, it will be necessary to introduce the notion of
time and to impose appropriate restrictions on the operational semantics.

8.3. Future Works

8.3.1. Toward More Formal Semantics

Although the semantics of GHC in Section 4.4 is not given formally, it is de-
scribed with much care. The simplicity of the language and the use of familiar
and stable concepts such as unification contribute to the clarity of the informal
description. Clear informal semantics is valuable as it is.

Nevertheless, we need a more formal semantics, of course. Formal semantics
gives a foundation for correct implementation of the language, for mechanical and
manual handling of programs such as partial evaluation, and for reasoning about
programs. A declarative semantics of logic programs described in Section 2.1.4 is
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of limited use because of the additional construct of GHC. Moreover, it seems hard
to introduce causality in that declarative framework. A more promising approach
should be to generalize the formal semantics of non-deterministic dataflow languages
(Brock and Ackerman [1981])(Brock [1983])(Staples and Nguyen [1985]).

We must also develop a detailed operational semantics. An operational seman-
tics shows guidelines for implementation algorithmically. It is especially important
in parallel languages, since it constructs the semantics of a program by means of
primitive operations. To this end, Ueda [1986] analyzes the operational aspects of
anti-substitutability.

8.3.2. User Language

Although GHC as described in Chapter 4 provides no syntactic sugars, the
author believes that a GHC program is fairly readable. A program with complex
data flow is not easy to understand, of course, but it is mainly due to the complexity
of the program itself.

However, we often use GHC as a process description language with process
interpretation in mind. Since process interpretation is a kind of pragmatics, an
appropriate syntactic support by a user language might be desirable. It should be an
interesting work to design a process-oriented user language which can clearly express
flexible data flow of GHC. It should also be interesting to design modularization
facilities based on the notion of processes.

A much more conservative feature that could be incorporated into a user lan-
guage is a notation for anonymous predicates. The current syntax of GHC forces a
programmer to invent a new predicate name for each conditional branching, as in
the following program appearing in Section 4.6.3.

filter(P,Xs,[Y|Ys1]) :- true | Xs=[X|Xs1l], filter2(P,X,Xs1,Y,Ys1).
filter(P,Xs, [] ) :— true | Xs=[].

filter2(P,X,Xs1,Y,Ys1) :- X mod P=:=0 | filter(P,Xs1,[Y|Ys1]).
filter2(P,X,Xs1,Y,Ys1) :- X mod P=\=0 | Y=X, filter(P,Xs1,Ysi ).

By eliminating the auxiliary predicate ‘filter2’ and restricting the clause head to
the most general form, we get the following representation:

filter(P, Xs, Ys) :-

( Ys=[Y|Ys1] |
Xs=[X|Xs1],
( X mod P=:=0 | filter(P, Xs1, Ys ) ;
X mod P=\=0 | Y=X, filter(P, Xs1, Ys1)
)
Ys=[] | Xs=[]
).
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Thus anonymous predicates look like guarded commands, and the program looks
more procedural. Note, however, that we have used nothing more than a syntactic
sugar, though the above representation seems inappropriate under Open World
Assumption. Syntactic sugars of the same kind would include the notation similar
to the case statement of Pascal for multiway branching according to the value of
some variable. Syntactic conventions of this kind will be added when they are called
for in writing programs.

8.3.3. Programming System and Metalevel Facilities

It is often said that a parallel program is hard to debug. Probably, a program
with a simple process structure and simple dataflow is tractable enough, but it may
be hard to analyze the behavior of a program with complex dataflow. Takeuchi
[1986] developed a debugger of GHC based on the divide-and-query method of
Shapiro [1982]. Techniques developed in the context of functional programming
could also be incorporated. For example, Takahashi, Ono and Amamiya [1985] im-
proved the efficiency of the divide-and-query debugging by taking the static struc-
ture of a program into account. Techniques for tracing or spying a parallel program
must also be developed. Tracing and spying will be useful for analyzing an erro-
neous situation in a large, complex program rather than for identifying a bug. They
could be used also for monitoring resource allocation and efficiency.

A programming system that automatically proves or helps us prove the cor-
rectness of a program, and a system that automatically derives or helps us derive
a correct and efficient program are important also. For these purposes, a good
specification language well suited to the basic concept of GHC should be valuable.

It seems best to write these programming systems in GHC itself, though we
have not finished the design of the set of features for system programming. A system
program must fulfill the following requirements:

(1) A system program must be able to communicate with a user program.

2) A system program must be able to observe the execution of a user program; at
y prog prog )
least it must be able to detect termination of a user program.

(3) A system program must have necessary control over a user program.
(4) A system program must never be killed by a user program.

However, the previous proposals on system programming in parallel logic program-
ming languages fail to satisfy the above requirements. A Unix-like shell by Shapiro
[1984] does not satisfy (1); Requirement (1) claims that we cannot use a guard to
guarantee (4). The two- (and three-) argument metacall by Clark and Gregory
[1984b] does not satisfy (4) under anti-substitutability as we explained in Section
4.7.2. Further investigation is necessary to have a better solution. Introducing some
notions that distinguish between object- and meta-levels will be inevitable, since
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observation and control are inherently meta-level notions. The problem is how to
introduce them.

8.3.4. Implementation

Besides the implementation described in Section 6.2, a compiler-based sequen-
tial implementation (Esaki, Miyazaki and Dasai [1986]) has been made on PSI
(Taki, Yokota, Yamamoto, Nakajima and Mitsuishi [1984]). This implementation
is intended to be modified into a distributed implementation on multi-PSI, a multi-
processor system composed of 4 to 6 PSI’s. Another implementation effort is under
way on VAX11-780, using the instruction set like Warren’s [1983]. A sample object
program for ‘append’ marked more than 30 kRPS (kilo Reductions Per Second) in
an idealized condition. These implementations do not allow user-defined goals in
guards.

However, the speed of 30 kRPS for ‘append’ on a machine of around 1 MIPS
may still be unsatisfactory, since this figure means only 30,000 message receivings
and 30,000 message sendings per second in process interpretation. We considered
in Section 6.1 optimization techniques of stream merging, stream distribution and
mutable arrays, but we did not go so far as to optimize the representation of streams.
It is necessary to consider time- and space-efficient implementation of important
data structures including streams, character strings, and large mutable objects such
as databases.

8.3.5. Theoretical Issues of Parallel Computation

It is hoped that the simplicity and the generality of GHC stimulate theoretical
research on the underlying parallel computational model. Also, it is important
to find an appropriate cost criterion on which to discuss computational complexity,
though it may be implementation dependent. Many theoretical results on sequential
computation or those depending on sequential computation must be re-examined
to adapt them to the framework of parallel computation. This re-examination may
help in separating those points essential for any manner of computation from those
specific to sequential computation, thus contributing also to sequential computation.

We have seen in the history of Lisp and Prolog that a ‘pure’ language becomes
widely used only after impure extensions, and that even after such extensions only
its pure subset attracts attention of theoretical persons. Extensions ignored by
theorists tend to be intolerably dirty. We should try to minimize the discrepancy of
the theoretical and the practical versions of a language, and a simple and powerful
language should promote this direction. A good programming language should well
mediate among theorists, application programmers, and implementors. GHC is
the first step from Prolog along this direction; we have provided a framework in
which we can handle input and output, and we have introduced a minimal control
structure necessary to guide the computation in the right direction. However, it
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still excludes some important concepts including those on control such as fairness
of nondeterministic choice, though it would be very easy to introduce them in an
irresponsible way. At the next step, we must consider the unsolved problems for
the better approximation to the ultimate language.
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