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Abstract. We study how constraint-based static analysis can be applied
to the automated and systematic debugging of program errors.
Strongly moding and constraint-based mode analysis are turning to play
fundamental roles in debugging concurrent logic/constraint programs as
well as in establishing the consistency of communication protocols and
in optimization. Mode analysis of Moded Flat GHC is a constraint satis-
faction problem with many simple mode constraints, and can be solved
efficiently by unification over feature graphs. We have proposed a sim-
ple and efficient technique which, given a non-well-moded program, di-
agnoses the “reasons” of inconsistency by finding minimal inconsistent
subsets of mode constraints. Since each constraint keeps track of the
symbol occurrence in the program that imposed the constraint, a min-
imal subset also tells possible sources of program errors. The technique
is quite general and can be used with other constraint-based frameworks
such as strong typing.
Based on the above idea, we study the possibility of automated debugging
in the absence of mode/type declarations. The mode constraints are usu-
ally imposed redundantly, and the constraints that are considered correct
can be used for correcting wrong symbol occurrences found by the di-
agnosis. As long as bugs are near-misses, the automated debugger can
propose a rather small number of alternatives that include the intended
program. Search space is kept small because constraints effectively prune
many irrelevant alternatives. The paper demonstrates the technique by
way of examples.

1 Introduction

This paper proposes a framework of automated debugging of program errors
under static, constraint-based systems for program analysis, and shows how and
why program errors can be fixed in the absence of programmers’ declarations.
The language we are particularly interested in is Moded Flat GHC [7][8] proposed
in 1990. Moded Flat GHC is a concurrent logic (and consequently, a concurrent
constraint) language with a constraint-based mode system designed by one of
the authors, where modes prescribe the information flow that may be caused by
the execution of a program.
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Languages equipped with strong typing or strong moding1 enable the de-
tection of type/mode errors by checking or reconstructing types or modes. The
best-known framework for type reconstruction is the Hindley-Milner type sys-
tem [3], which allows us to solve a set of type constraints obtained from program
text efficiently as a unification problem.

Similarly, the mode system of Moded Flat GHC allows us to solve a set of
mode constraints obtained from program text as a constraint satisfaction prob-
lem. Without mode declarations or other kinds of program specification given by
programmers, mode reconstruction statically determines the read/write capabil-
ities of variable occurrences and establishes the consistency of communication
protocols between concurrent processes [8]. The constraint satisfaction problem
can be solved mostly (though not entirely) as a unification problem over feature
graphs (feature structures with cycles) and can be solved in almost linear time
with respect to the size of the program [1]. As we will see later, types also can
be reconstructed using a similar (and simpler) technique.

Compared with abstract interpretation usually employed for the precise anal-
ysis of program properties, constraint-based formulation of the analysis of basic
properties has a lot of advantages. Firstly, thanks to its incremental nature, it
is naturally amenable to separate analysis of large programs. Secondly, it allows
simple and general formulations of various interesting applications including er-
ror diagnosis.

When a concurrent logic program contains bugs, it is very likely that mode
constraints obtained from the erroneous symbol occurrences are incompatible
with the other constraints. We have proposed an efficient algorithm that finds a
minimal inconsistent subset of mode constraints from an inconsistent (multi)set
of constraints [2]. A minimal inconsistent subset can be thought of as a minimal
“explanation” of the reason of inconsistency. Furthermore, since each constraint
keeps track of the symbol occurrence(s) in the program that imposed the con-
straint, a minimal subset tells possible sources (i.e., symbol occurrences) of pro-
gram errors. Our technique can locate multiple bugs at once. The technique is
quite general and can be used with other constraint-based frameworks such as
strong typing.

Since the conception of the above framework of program diagnosis and some
experiments, we have found that the multiset of mode constraints imposed by a
program usually has redundancy and it usually contains more than one minimal
inconsistent subset when it is inconsistent as a whole. Redundancy comes from
two reasons:

1. A non-trivial program contains conditional branches or nondeterministic
choices. In (concurrent) logic languages, they are expressed as a set of rewrite
rules (i.e., program clauses) that may impose the same mode constraints on
the same predicate.

2. A non-trivial program contains predicates that are called from more than
one place, some of which may be recursive calls. The same mode constraint
may be imposed by different calls.

1 Modes can be thought of as “types in a broad sense,” but in this paper we reserve
the term “types” to mean sets of possible values.
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We can often take advantage of the redundancies and pinpoint a bug (Sect. 3)
by assuming that redundant modes are correct. The next step worth trying is
automated error correction. We can estimate the intended mode of a program
from the parts of the program that are considered correct, and use it to fix small
bugs, which is the main focus of this paper.

Bugs that can be dealt with by automated correction are necessarily limited
to near-misses, but still, automated correction is worth studying because:

– serious algorithm errors cannot be mechanically corrected anyway,
– if the algorithm for a program has been correctly designed, the program is

usually “mostly correct” even if it doesn’t run at all, and
– real-life programs are subject to a number of revisions, upon which small

errors are likely to be inserted.

Our idea of error correction can be compared with error-correcting codes in
coding theory. Both attempt to correct minor errors using redundant informa-
tion. Unlike error-correcting codes that contain explicit redundancies, programs
are usually not written in a redundant manner. However, programs interpreted
in an abstract domain may well have implicit redundancies. For instance, the
then part and the else part of a branch will usually compute a value of the
same type, which should also be the same as the type expected by the reader of
the value. This is exactly why the multiset of type or mode constraints usually
has redundancies.

It is not obvious whether such redundancies can be used for automated error
correction, because even if we correctly estimate the type/mode of a program,
there may be many possible ways of error correction that are compatible with the
estimated type/mode. The usefulness of the technique seems to depend heavily
on the choice of a programming language and the power of the constraint-based
static analysis. We have obtained promising results using Moded Flat GHC and
its mode system, with the assistance of type analysis and other constraints.

The other concern in automated debugging is search space. Generate-and-test
search, namely the generation of a possible correction and the computation of its
principal mode (and type), can involve a lot of computation, but we can prune
much of the search space by using ‘quick-check’ mode information to detect non-
well-modedness. Types are concerned with aspects of program properties that
are different from modes, and can be used together with modes to improve the
quality of error correction.

2 Strong Moding and Typing in Concurrent Logic
Programming

We first outline the mode system of Moded Flat GHC. The readers are referred
to [8] and [9] for details.

In concurrent logic programming, modes play a fundamental role in estab-
lishing the safety of a program in terms of the consistency of communication
protocols. The mode system of Moded Flat GHC gives a polarity structure (that
determines the information flow of each part of data structures created during
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execution) to the arguments of predicates that determine the behavior of goals.
A mode expresses this polarity structure, which is represented as a mapping from
the set of paths to the two-valued codomain {in, out}. Paths here are strings of
pairs, of the form 〈symbol, arg〉, of predicate/function symbols and argument po-
sitions, and are used to specify possible positions in data structures. Formally,
the set PTerm of paths for terms and the set PAtom of paths for atomic formulae
are defined using disjoint union as:

PTerm = (
∑

f∈Fun

Nf )∗ , PAtom = (
∑

p∈Pred

Np)× PTerm ,

where Fun/Pred are the sets of function/predicate symbols, and Nf/Np are
the sets of possible argument positions (numbered from 1) for the symbols f/p.
The purpose of mode analysis is to find the set of all modes (each of type
PAtom → {in, out}) under which every piece of communication is cooperative.
Such a mode is called a well-moding. Intuitively, in means the inlet of information
and out means the outlet of information. A program does not usually define a
unique well-moding but has many of them. So the purpose of mode analysis is to
compute the set of all well-modings in the form of a principal (i.e., most general)
mode. Principal modes can be expressed naturally by mode graphs, as described
later in this section.

Given a mode m, we define a submode m/p, namely m viewed at the path
p, as a function satisfying (m/p)(q) = m(pq). We also define IN and OUT
as submodes returning in and out , respectively, for any path. An overline ‘ ’
inverts the polarity of a mode, a submode, or a mode value.

A Flat GHC program is a set of clauses of the form h:- G | B, where h is
an atomic formula and G and B are multisets of atomic formulae. Constraints
imposed by a clause h:- G | B are summarized in Fig. 1. Rule (BU) numbers
unification body goals because the mode system allows different body unification
goals to have different modes. This is a special case of mode polymorphism that
can be introduced into other predicates as well [2], but in this paper we will not
consider general mode polymorphism because whether to have polymorphism is
independent of the essence of this work.

For example, consider a quicksort program defined as follows:

quicksort(Xs,Ys):- true | qsort(Xs,Ys,[]).
qsort([], Ys0,Ys ):- true | Ys=1Ys0.
qsort([X|Xs],Ys0,Ys3):- true |

part(X,Xs,S,L), qsort(S,Ys0,Ys1), Ys1=2[X|Ys2], qsort(L,Ys2,Ys3).
part(-,[], S, L ):- true | S=3[], L=4[].
part(A,[X|Xs],S0,L ):- A>=X | S0=5[X|S], part(A,Xs,S,L).
part(A,[X|Xs],S, L0):- A< X | L0=6[X|L], part(A,Xs,S,L).

From the entire definition, we obtain 53 constraints which are consistent. We
could regard these constraints themselves as representing the principal mode of
the program, but the principal mode can be represented more explicitly in terms
of a mode graph (Fig. 2). Mode graphs are a kind of feature graphs [1] in which
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¶ ³
(HF) m(p) = in, for a function symbol occurring in h at p.

(HV) m/p = IN , for a variable symbol occurring more than once in h at p
and somewhere else.

(GV) If some variable occurs both in h at p and in G at p′,
∀q ∈ PTerm

(
m(p′q) = in ⇒ m(pq) = in

)
.

(BU) m/〈=k, 1〉 = m/〈=k, 2〉, for a unification body goal =k.

(BF) m(p) = in, for a function symbol occurring in B at p.

(BV) Let v be a variable occurring exactly n (≥ 1) times in h and B at
p1, . . . , pn, of which the occurrences in h are at p1, . . . , pk (k ≥ 0). Then

{R
(
{m/p1, . . . , m/pn}

)
, if k = 0;

R
(
{m/p1, m/pk+1, . . . , m/pn}

)
, if k > 0;

where the unary predicateR over finite multisets of submodes represents
“cooperative communication” between paths and is defined as

R(S)
def
= ∀q ∈ PTerm ∃s ∈ S

(
s(q) = out ∧ ∀s′ ∈ S\{s}

(
s′(q) = in

))
.

µ ´
Fig. 1. Mode constraints imposed by a program clause h :- G | B or a goal clause
:- B.

1. a path (in the graph-theoretic sense) represents a member of PAtom ,
2. the node corresponding to a path p represents the value m(p) (↓ = in,
↑ = out),

3. each arc is labeled with the pair 〈symbol, arg〉 of a predicate/function symbol
and an argument position, and may have a “negative sign” (denoted “•” in
Fig. 2) that inverts the interpretation of the mode values of the paths beyond
that arc, and

4. a binary constraint of the form m/p1 = m/p2 or m/p1 = m/p2 is represented
by letting p1 and p2 lead to the same node.

Mode analysis proceeds by merging many simple mode graphs representing
individual mode constraints. Thus its decidability is guaranteed by the decid-
ability of the unification algorithm for feature graphs. The principal mode of a
well-moded program, represented as a mode graph, is uniquely determined, as
long as all the mode constraints imposed by the program are unary (i.e., con-
straint on the mode value of, or the submode at, a particular path) or binary (i.e.,
constraint between the submodes at two particular paths). Space limitations do
not allow us to explain further details, which can be found in [9].

A type system for concurrent logic programming can be introduced by clas-
sifying a set Fun of function symbols into mutually disjoint sets F1, . . . , Fn. A
type here is a function from PAtom to the set {F1, . . . , Fn}. Like principal modes,
principal types can be computed by unification over feature graphs. Constraints
on a well-typing τ are summarized in Fig. 3. The choice of a family of sets
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¶ ³

<q,1> <q,2> <q,3> <p,1> <p,2> <p,3>
<p,4>

< . ,1>
< . ,2>

< . ,2>

< . ,1>

µ ´
Fig. 2. The mode graph of a quicksort program. q stands for qsort and p stands for
part. The mode information of the toplevel predicate and unification goals is omitted.

F1, . . . , Fn is somewhat arbitrary. This is why moding is more fundamental than
typing in concurrent logic programming.

Mode and type analyses have been implemented as part of klint, a static
analyzer for KL1 programs [11].

¶ ³
(HBFτ ) τ(p) = Fi, for a function symbol occurring at p in h or B.

(HBVτ ) τ/p = τ/p′, for a variable occurring both at p and p′ in h or B.

(GVτ ) ∀q ∈ PTerm

(
m(p′q) = in ⇒ τ(pq) = τ(p′q)

)
, for a variable occurring

both at p in h and at p′ in G.

(BUτ ) τ/〈=k, 1〉 = τ/〈=k, 2〉, for a unification body goal =k.

µ ´
Fig. 3. Type constraints imposed by a program clause h :- G | B or a goal clause
:- B.

3 Identifying Program Errors

When a concurrent logic program contains an error, it is very likely (though
not always the case) that its communication protocols become inconsistent and
the set of its mode constraints becomes unsatisfiable. A wrong symbol occurring



7

at some path is likely to impose a mode constraint inconsistent with correct
constraints representing the intended specification.

A minimal inconsistent subset of mode constraints can be computed effi-
ciently using a simple algorithm2. Let C = {c1, . . . , cn} be a multiset of con-
straints. Algorithm 1 below finds a single minimal inconsistent subset S from
C when C is inconsistent. When C is consistent, the algorithm terminates with
S = {}. false is a self-inconsistent constraint used as a sentinel.
¶ ³

Algorithm 1:
cn+1 ← false;
S ← {};
while S is consistent do

D ← S; i ← 0;
while D is consistent do

i ← i + 1; D ← D ∪ {ci}
end while;
S ← S ∪ {ci}

end while;
if i = n + 1 then S ← {}

µ ´
The readers are referred to [2] for a proof of the minimality of S, as well

as various extensions of the algorithm. Note that the algorithm can be readily
extended to finding multiple bugs at once. That is, once we have found a minimal
subset covering a bug, we can reapply the algorithm to the rest of the constraints.

In the algorithm, the merging of constraint sets and the checking of their
consistency are realized mostly as the unification of mode graphs and the check-
ing of its success/failure. Although the algorithm is quite general, its efficiency
hinges upon the fact that there is a pair of efficient algorithms for computing
the union of constraint sets and checking its consistency.

Our experiment shows that the average size of minimal inconsistent subsets
is less than 4, and we have not yet found a minimal inconsistent subset with
more than 11 elements. The size of minimal subsets turns out to be independent
of the total number of constraints, and most inconsistencies can be explained by
constraints imposed by a small range of program text.

Because we are dealing with near-misses, we can assume that most of the
mode constraints obtained from a program represent an intended specification
and that they have redundancies in most cases. In this case, one can often pin-
point a bug either

1. by computing a maximal consistent subset of size n− 1 and taking its com-
plement, or

2. by computing several overlapping minimal inconsistent subsets and taking
their intersection.

2 The algorithm described here is a revised version of the one proposed in [2] and takes
into account the case when C is consistent.
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Algorithm 2 described below combines these two alternative policies of pin-
pointing. To reduce the amount of computation, we do not compute all minimal
subsets; instead, for each element (say si) of the initial inconsistent subset S, we
execute Algorithm 1 after removing si from C, which will lead to another min-
imal subset if it exists. Thus Algorithm 2 simultaneously computes constraints
suspected by the two policies.

Let S = {s1, . . . , sm} be a minimal subset obtained by Algorithm 1, and
getminimal(C) be a function which computes a minimal inconsistent subset
from a multiset C of constraints using Algorithm 1 above:
¶ ³

Algorithm 2:
T ← S;
for j ← 1 to m do

S′ ← getminimal(C\{sj});
if S′ = {} then

output {sj} as a solution of Policy 1
else T ← T ∪̇S′;

end for
µ ´

Here, T is a multiset of constraints what serves as counters of the numbers
of constraints occurring in S and (various versions of) S′, and ∪̇ is a multiset
union operator. T records how many times each constraint occurred in different
minimal subsets. Under Policy 2, constraints with more occurrences in T are
more likely to be related to the source of the error.

Algorithm 2 is useful in locating multiple bugs at once. That is, once we have
obtained a minimal inconsistent subset S, we can apply Algorithm 2 to refine
the subset and remove only those constraints in the refined subset from C.

When Policy 1 outputs a single constraint imposed by an erroneous symbol
occurrence, we need not consider Policy 2. However, there are cases where Policy
1 outputs no constraints or more than one constraint, in which case Policy 2 may
better tell which constraints to suspect first.

Algorithm 2 is not always able to refine the initial set S, however. For in-
stance, when S is the only minimal inconsistent subset, the algorithm will output
all the elements of S by Policy 1 and will find no alternative subset by Policy 2.
Fortunately, this is not a serious problem because S is usually quite small.

4 Automated Debugging Using Mode Constraints

Constraints that are considered wrong can be corrected by

– replacing the symbol occurrences that imposed those constraints by other
symbols, or

– when the suspected symbols are variables, by making them have more oc-
currences elsewhere (cf. Rule (BV) of Fig. 1).
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In this paper, we focus on programs with a small number of errors in variables
and constants; that is, we focus on errors in terminal symbols in abstract syntax
trees. This may seem restrictive, but concurrent logic programs have quite flat
syntactic structures (compared with other languages) and instead make heavy
use of variables. Our experience tells that a majority of simple program errors
arise from the erroneous use of variables, for which the support of a static mode
system and debugging tools are invaluable.

An algorithm for automated correction is basically a search procedure whose
initial state is the erroneous program, whose operations are the rewriting of
the occurrences of variables or constants, and whose final states are well-moded
programs3. This can be regarded also as a form of abductive reasoning which,
from a presumably correct mode constraint B and the moding rules of the form
“if A then B” (or “B for A”) as shown in Fig. 1, infers a syntactic constraint A
that is considered correct.

The symbols to be substituted in the correction are chosen from the constants
or other variables occurring in the same clause. When the symbol to be rewritten
occurs in the head, we should also consider replacement by a fresh variable. We
don’t have to try to form the mode graphs of all the alternative programs; from
the set C \S, we can derive a replacement guideline, namely simple constraints
to be satisfied by the substituted symbol. Any replacement that violates the
guideline will not lead to a well-moded program and can be rejected immediately.

Error correction may require the rewriting of more than one symbol occur-
rence. We perform iterative-deepening search with respect to the number of
rewritings, because the assumption of near-misses implies that a simpler cor-
rection is more likely to be the intended one. These ideas have been partially
implemented in the kima analyzer for KL1 programs [10].

5 Using Constraints Other Than Modes

When error correction requires the rewriting of more than one symbol occur-
rence, the iterative-deepening search may report a large number of alternative
solutions, though they always include an intended one.

Using both the mode system and the type system reduces the number of
alternatives greatly. Modes and types capture different aspects of a program,
and rather few of well-formed programs are both well-moded and well-typed.
We can expect that there are only a small number of well-moded and well-typed
program syntactically in the ‘neighborhood’ of the given near-miss program.

The reason why a type system alone is insufficient should become clear by
considering programs that are simple in terms of types such as numerical pro-
grams. The mode system is sensitive to the number of occurrences of variables
(rule (BV) in Fig. 1) and can detect many errors that cannot be found by type
analysis. However, even when the programs are simple in terms of types, types
can be useful for inferring what constant should replace the wrong symbol.
3 Here, we assume that errors can be corrected without changing the shape of the

abstract syntax tree, though we could extend our technique and allow occurrences
of terminal symbols to be simply added or deleted.
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Other heuristics from our programming experiences can reinforce the frame-
work as well:

1. A singleton variable occurring in a clause body is highly likely to be an error.
2. A solution containing a variable occurring more than once in a clause head

is less likely to be an intended one.

These heuristics are not as ad hoc as it might look; indeed they can be replaced
by a unified rule on constraint strength:

– A well-moded solution with weaker mode constraints is more likely to be an
intended one.

A singleton variable occurring at p in a clause body imposes a constraint m/p =
OUT , which is much stronger than m(p) = out . Similarly, a variable occurring
more than once at p1, p2, . . . in a clause head imposes a constraint m/pi = IN .

We could use more surface-level heuristics such as the similarity of variable
names, but this is outside the scope of this paper.

6 Experiments and Examples

We show some experimental results and discuss two examples of automated
debugging. The examples we use are admittedly simple but that can be justified.
First, we must anyway start with simple examples. Second, we have found that
most inconsistencies can be explained by constraints imposed by a small range of
program text, as we pointed out in Sect. 3. So we strongly expect that the total
program size does not make much difference in the performance or the quality
of automated debugging.

6.1 Experiments

We applied the proposed technique to programs with one mutation in variable
occurrences. We systematically generated near-misses (each with one wrong oc-
currence of a variable) of three programs (there are many ways of inserting a
bug) and examined how many of them became non-well-moded, whether au-
tomated correction reported an intended program, and how many alternatives
were reported. Table 1 shows the results. In the table, the column “total cases”
shows the numbers of cases examined, and the column “detected cases” shows
how many cases lead to non-well-moded programs. For non-well-moded pro-
grams, we examined how many well-moded alternatives were proposed by the
automated debugger by depth-1 search. In this experiment, we did not apply
Algorithm 2 to refine a minimal inconsistent subset.

The programs we used are list concatenation (append), the generator of a
Fibonacci sequence, and quicksort. We used the definitions of predicates only,
that is, we did not use the constraints that might be imposed by the caller of
these programs.

The row “mode only” indicates the results using mode constraints only, ex-
cept that when correcting errors we regarded singleton variables in clause bodies
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as erroneous. In this experiment, minimal inconsistent subsets, when found, al-
ways included constraints imposed by the wrong symbol occurrence, and the
original, intended programs were always included in the sets of the alternatives
proposed by the algorithm.

Table 1. Single-error detection and correction

Program Analysis Total Detected Proposed alternatives
cases cases 1 2 3 4 5 6 7 ≥8

append mode only 57 33 16 4 1 0 5 4 2 1
new variable 13 11 7 0 0 1 1 2 0 0
mode & type 57 44 19 3 2 5 1 3 0 0

fibonacci mode only 84 43 28 7 0 0 0 2 3 3
new variable 15 14 6 3 0 0 0 2 2 1
mode & type 84 57 34 2 0 2 2 3 0 0

quicksort mode only 245 148 84 33 2 3 1 8 7 10
new variable 45 43 24 2 0 3 2 4 3 5
mode & type 245 189 93 33 5 9 0 5 2 1

A bug due to a wrong variable occurrence often results from misspelling
(say the confusion of YS and Ys), in which case the original variable is likely to
be replaced by a variable not occurring elsewhere in the clause. The row “new
variable” shows the statistics of this case, which tells most errors were detected
by mode analysis.

The row “mode & type” shows the improvement obtained by using types as
well. The column “detected cases” shows that some of the well-moded erroneous
programs were newly detected as non-well-typed. Note that the experiments
did not consider the automated correction of well-moded but non-well-typed
programs. For fibonacci and quicksort, we assumed that integers and list
constructors belonged to different types. For append, we employed a stronger
notion of types and assumed that the type of the elements of a list could not be
identical to the type of the list itself.

The results show that the use of types was effective in reducing the number
of alternatives. More than half of non-well-moded near-misses were uniquely
restored to the original program. Thus, programmers can benefit much from the
support of constraint-based static analysis by writing programs in a well-moded
and well-typed manner.

6.2 Example 1 — Append

As an example included in the above experiment, we discuss an append program
with a single error. This example is simple and yet instructive.
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R1 : append([], Y,Z ):- true | Y=1Z.
R2 : append([A|Y],Y,Z0):- true | Z0=2[A|Z], append(X,Y,Z).

(The head should have been append([A|X],Y,Z0))

Algorithm 1 computes the following minimal inconsistent subset of mode
constraints:

Mode constraint Rule Source symbol
(a) m/〈append, 1〉〈., 2〉 = IN (HV) Y in R2

(b) m/〈append, 1〉 = OUT (BV) X in R2

This tells that we should suspect the variables X and Y in Clause R2. The
search first tries to rewrite one of the occurrences of these variables (iterative-
deepening), and finds six well-moded alternatives:

(1) R2 : append([A|X],Y,Z0):- true | Z0=2[A|Z], append(X,Y,Z).
(2) R2 : append([A|Y],X,Z0):- true | Z0=2[A|Z], append(X,Y,Z).
(3) R2 : append([A|Y],Y,Z0):- true | Z0=2[A|Z], append(Y,Y,Z).
(4) R2 : append([A|Y],Y,Z0):- true | Z0=2[A|Z], append(Z0,Y,Z).
(5) R2 : append([A|Y],Y,Z0):- true | Z0=2[A|Z], append(A,Y,Z).
(6) R2 : append([A|Y],Y,Z0):- true | Z0=2[A|Z], append(Z,Y,Z).

Types do not help much in this example, though Alternative (5) can be elimi-
nated by an implicit type assumption described in Sect. 6.1 that list constructors
and the elements of the list cannot occupy the same path. Alternatives (3), (4),
(5) and (6) are programs that cause reduction failure for most input data, and
can be regarded as less plausible solutions because of the two occurrences of Y
in the clause heads that impose stronger constraints than intended.

What are Alternatives (1) and (2)? Alternative (1) is the intended program,
and Alternative (2) is a program that merges two input lists by taking their ele-
ments alternately. It’s not ‘append’, but is a quite meaningful program compared
with the other alternatives!

In this example, Algorithm 2, if applied, will detect Constraint (b) as the
unique result of Policy 1. This means that there must be some problems with
the variable X, which in turn means that X must either be removed or occur more
than once. Search of well-moded programs finds the same number of alternatives,
but the search space is reduced because we do not have to consider the rewriting
between Y and variables other than X.

6.3 Example 2 — Quicksort

Next, we consider a quicksort program with two errors.

1: R1 : quicksort(Xs,Ys):- true | qsort(Xs,Ys,[]).
2: R2 : qsort([], Ys0,Ys ):- true | Ys=1Ys0.
3: R3 : qsort([X|Xs],Ys0,Ys3):- true |
4: part(X,Xs,S,L), qsort(S,Ys0,Ys1),
5: Ys2=2[X|Ys1], qsort(L,Ys2,Ys3).

(the unification should have been Ys1=2[X|Ys2])
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Algorithm 1 returns the following minimal inconsistent subset:

Mode constraint Rule Source symbol
(a) m(〈qsort, 3〉) = in (BF) “[]” in R1

(b) m/〈=1, 1〉 = m/〈qsort, 3〉 (BV) Ys in R2

(c) m/〈=1, 2〉 = m/〈=1, 1〉 (BU) =1 in R2

(d) m/〈qsort, 2〉 = m/〈=1, 2〉 (BV) Ys0 in R2

(e) m(〈=2, 2〉) = in (BF) “.” in R3

(f) m/〈=2, 2〉 = m/〈=2, 1〉 (BU) =2 in R3

(g) m/〈=2, 1〉 = m/〈qsort, 2〉 (BV) Ys2 in R3

This subset is inconsistent because two inconsistent constraints can be de-
rived from it:

m(〈qsort, 2〉) = out , by (a), (b), (c) and (d),
m(〈qsort, 2〉) = in, by (e), (f) and (g).

It is worth noting that this example is rather difficult—the minimal subset is
rather large and Algorithm 2 does not find an alternative minimal subset. That
is, there is no redundancy of mode constraints in the formation of the difference
list representing the result.

Thus we cannot infer the correct mode of the path 〈qsort, 2〉 and other paths,
and automated debugging should consider both of the possibilities, m(〈qsort,
2〉) = in and m(〈qsort, 2〉) = out .

We consider the correction of both constants and variables here. It turns out
that all depth-1 corrections are non-well-moded. There are six depth-2 correc-
tions that are well-moded:

(1) Line 1: quicksort(Xs,Ys):- true | qsort(Xs,Zs,Zs).
(2) Line 1: quicksort(Xs,Ys):- true | qsort(Zs,Ys,Zs).
(3) Line 1: quicksort(Xs,Ys):- true | qsort(Xs,c,Ys).
(4) Line 1: quicksort(Xs,Ys):- true | qsort(c,Ys,Xs).
(5) Line 5: Ys2=2[X|Ys2], qsort(L,Ys1,Ys3).
(6) Line 5: Ys1=2[X|Ys2], qsort(L,Ys2,Ys3).

Here, c is some constant.
Typing doesn’t help much for this example. The assumption that integers

and list constructors should not occupy the same path does not exclude any of
the above alternatives.

However, usage information will help. Suppose we know that quicksort is
used as m(〈quicksort, 1〉) = in and m(〈quicksort, 2〉) = out . This excludes
Alternatives (1), (2) and (4). We can also exclude Alternative (5) by static
occur-check (Ys2 occurs on both sides of unification).

Of the remaining, Alternative (6) is the intended program that sorts items
in ascending order. It is interesting to see that Alternative (3) is a program for
sorting items in descending order by choosing ‘[]’, the simplest element of the list
type, as the constant c. This is not an intended program, but is a reasonable and
approximately correct alternative which should not be rejected in the absence
of program specification.
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7 Related Work

Most previous work on the mode analysis of (concurrent) logic languages was
based on abstract interpretation, and focused mainly on the reasoning of program
properties assuming that the programs were correct. In contrast, constraint-
based mode analysis can be used for diagnosis as well as optimization by assum-
ing that correct programs are well-moded.

Analysis of malfunctioning systems based on their intended logical specifi-
cation has been studied in the field of artificial intelligence [4] and known as
model-based diagnosis. Model-based diagnosis has similarities with our work in
the ability of searching minimal explanations and multiple faults. However, the
purpose of model-based diagnosis is to analyze the differences between intended
and observed behaviors. Our mode system does not require that the intended
behavior of a program be given as mode declarations, and still locates bugs quite
well.

Wand proposed an algorithm for diagnosing non-well-typed functional pro-
grams [12]. His approach was to extend the unification algorithm for type re-
construction to record which symbol occurrence imposed which constraint. In
contrast, our framework is built outside any underlying framework of constraint
solving. We need not modify the constraint-solving algorithm but just call it. Be-
sides its generality, our approach has an advantage that static analysis does not
incur any overhead for well-moded/typed programs. Furthermore, the diagnosis
guarantees the minimality of the explanation and often refines it further.

Comparison between Moded Flat GHC and other concurrent logic/constraint
languages with some notions of moding can be found in [2].

8 Conclusions and Future Work

We studied how constraint-based static analysis could be applied to the auto-
mated and systematic debugging of program errors in the absence of mode/type
declarations. We showed that, given a near-miss Moded Flat GHC program, our
technique could in many cases report a unique solution or a small number of
reasonable solutions that included the intended program.

If a programmer declares the mode and/or type of a program, that infor-
mation can be used as constraints that are considered correct. In general, such
constraints are useful in obtaining smaller minimal inconsistent subsets. How-
ever, our observation is that constraints implicitly imposed by the assumption of
well-modedness (and well-typedness) is strong enough for automatic debugging
to be useful.

It is a subject of future work to extend our framework to the correction of
non-terminal program symbols (i.e., function and predicate symbols), mainly in
terms of search space. It is yet to see whether the proposed framework works
well for other programming paradigms such as typed functional languages and
procedural languages, but we would claim that the concurrent logic/constraint
programming paradigm benefits enormously from static mode/type systems.
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